Quick Search

PRODUCTS

ACUMER 5000

Synonyms:
ACUMER 5000; acumer 5000; Acumer 5000; acumer5000; Acumer5000; ACUMER 5000; ACUMER5000; ACUMER; Acumer; acumer; 5000; Akumer; Akümer; Akumer5000; Akumer5; Akümer5000; akümer 5000; akümer5000; Carboxylate-sulfonate Copolymer Dispersant;

ACUMER 5000


Synonyms:
ACUMER 5000; acumer 5000; Acumer 5000; acumer5000; Acumer5000; ACUMER 5000; ACUMER5000; ACUMER; Acumer; acumer; 5000; Akumer; Akümer; Akumer5000; Akumer5; Akümer5000; akümer 5000; akümer5000; Carboxylate-sulfonate Copolymer Dispersant; Multipolymer for Silica and Magnesium Silicate Scale Control; polymer; polimer; Carboxylic Multipolymer; Calcium Carbonate; Calcium Phosphate / Phosphonate; carboxylic multipolymer; carboxylic polymer; karboksilik multipolimer; Iron Oxide Dispersion; Silica / Silicate; Silika; silica; Silica and Magnesium Silicate Scale Inhibitor; Akümer5000; acumer 5000; ACUMER 5000; akumer 5000; AKUMER 5000; acumer5000; ACUMER5000; AKUMER5000; akumer5000; TH 5000; th5000; TH5000; th 5000; SILIKA; SİLİKA; sılıka; silika; sılıca; silica; SILICA; SİLİCA; MAGNEZYUM SILICAT; MAGNEZYUM SILIKAT; MAGNEZYUM SİLİCAT; MAGNEZYUM SİLİKAT; magnezyum silikat; magnezyum sılıkat; magnezyum sılıcat; magnezyum silicat; MAGNEZYUM SILICAT INHIBITORU; magnezyum sılıcat ınhıbıtoru; magnezyum silikat inhibitörü; ANTİSKALAN; antıskalan; ANTISCALAN; ANTİSCALAN; antıscalan; antiscalan; antiskalan; antıskalant; ANTISCALANT; ANTİSCALANT; antiscalant; antıscalant;antiskalant; Ambosol; Magsorbent;Avibest; Britesorb; Gastomag; Magmasil; Naisuton; Novasorb; Salisil; Trinesium; Trisomin; Trimax;    Nikkagel M; Shimugon M; Magnesol XL; Sep-Pak Florisil; Britesorb 90; Haiburaito 325; HS-T (silicate); Macrosorb M 15; Haiburaito 1250; Mizuka Life P 1G; Mizupearl M 302; Silton SS 1; Celkate T 21; Kyowaad 600S; Britesorb No. 40; Caswell No. 533; Magnesium silicate [JAN:NF]; UNII-9B9691B2N9; HSDB 5823; KW 600S; EINECS 215-681-1; 9B9691B2N9; B13249; EPA Pesticide Chemical Code 072601; EC 215-681-1; Calcium magnesium silicate(1:1:1); 13813-64-4; EINECS 237-477-1; CTK0H7220; DTXSID00890680; Silicic acid calciummagnesium salt; Magnesium silicate, hydrate; MAGNESIUM SILICATE HYDRATE; 1343-90-4; Basic magnesium silicate; Magnesium silicate hydrated; DTXSID0052885; LS-88604; FT-0660673; Mussolinite; Agalite; Asbestine; Snowgoose; Steatite; Steawhite; Supreme; Cosmetic talc; Mistron vapor; Nonfibrous talc; Steatite talc; Supreme dense; French chalk; Mistron Star; Mistron frost P; Finntalc PF; Mistron RCS; Talc (powder); IT Extra; Desertalc 57; Mistron 2SC; Nonasbestiform talc; Finntalc C10; Finntalc M05; Finntalc M15; Finntalc P40; Mistron super frost; Talcan PK-P; Micro Ace K1; Micro Ace L1; Microtalco IT Extra; Mistron 139; Beaver White 200; Fibrene C 400; P 3 (Mineral); Polytal 4641; Polytal 4725; B 13 (mineral); Magnesium silicate talc; Emtal 500; Emtal 549; Emtal 596; Emtal 599; Nytal 200; Nytal 400; Micron White 5000A; Micron White 5000P; Micron White 5000S; EX-IT; FW-XO; Talc, non-asbestos form; Crystalite CRS 6002; PK-C; PK-N; Talcron CP 44-31; Hydrous magnesium silicate; Magnesium silicate, hydrous; Alpine talc USP, bc 127; Talc (containing no asbestos); CCRIS 3656; HSDB 830; LMR 100; Lo Micron talc USP, bc 2755; NCI-C06008; TY 80; Talc, containing no asbestos fibers; EINECS 238-877-9; Talc, not containing asbestiform fibers; B 13; CI 77718; CP 10-40; CP 38-33; MP 12-50; MP 25-38; MP 40-27; MP 45-26; Silicates: talc (containing no asbestos); Talc (powder), containing no asbestos fibers; Silicates (<1% quartz):talc (not containing asbestos); B 9; P 3; mineral graphite; Steat ite talc; non-fibrous talc; non-asbestiform talc; Talc [JAN]; Talc [USP:JAN]; Fibrous Non-Tremolite Talc; Silica,talc, non-asbestos form; talc, non-asbestos form, silica; Talc (containing no asbestos fibres); AKOS026749891; LS-2116; acumer 5000; Acumer 5000; acumer5000; Acumer5000; ACUMER 5000; ACUMER5000; ACUMER; Acumer; acumer; 5000; Akumer; Akümer; Akumer5000; Akumer5; Akümer5000; akümer 5000; akümer5000; silica and magnesium silicate; Carboxylate-sulfonate Copolymer Dispersant; Carboxylic Multipolymer; acumer 5000; Acumer 5000; acumer5000; Acumer5000; ACUMER 5000; ACUMER5000; ACUMER; Acumer; acumer; 5000; Akumer; Akümer; Akumer5000; Akumer5; Akümer5000; akümer 5000; akümer5000; Carboxylate-sulfonate Copolymer Dispersant; Multipolymer for Silica and Magnesium Silicate Scale Control; Carboxylic Multipolymer; Calcium Carbonate; Calcium Phosphate / Phosphonate; Iron Oxide Dispersion; Silica / Silicate; Silika; silica; Silica and Magnesium Silicate Scale Inhibitor; Akümer5000; Ambosol; Magsorbent; Avibest; Britesorb; Gastomag; Magmasil; Naisuton; Novasorb; Salisil; Trinesium; Trisomin; Trimax; Nikkagel M; Shimugon M; Magnesol XL; Sep-Pak Florisil; Britesorb 90; Haiburaito 325; HS-T (silicate); Macrosorb M 15; Haiburaito 1250; Mizuka Life P 1G; Mizupearl M 302; Silton SS 1; Celkate T 21; Kyowaad 600S; Britesorb No. 40; Caswell No. 533; Magnesium silicate [JAN:NF]; UNII-9B9691B2N9; HSDB 5823; KW 600S; EINECS 215-681-1; 9B9691B2N9; DB13249; EPA Pesticide Chemical Code 072601; EC 215-681-1; Calcium magnesium silicate(1:1:1); 13813-64-4; EINECS 237-477-1; CTK0H7220; DTXSID00890680; Silicic acid calciummagnesium salt; Magnesium silicate, hydrate; acumer 5000; Acumer 5000; acumer5000; Acumer5000; ACUMER 5000; ACUMER5000; ACUMER; Acumer; acumer; 5000; Akumer; Akümer; Akumer5000; Akumer5; Akümer5000; akümer 5000; akümer5000; Carboxylate-sulfonate Copolymer Dispersant; Multipolymer for Silica and Magnesium Silicate Scale Control; Carboxylic Multipolymer; Calcium Carbonate; Calcium Phosphate / Phosphonate; Iron Oxide Dispersion; Silica / Silicate; Silika; silica; Silica and Magnesium Silicate Scale Inhibitor; Akümer5000; Ambosol; MAGNESIUM SILICATE HYDRATE;    1343-90-4; Basic magnesium silicate; Magnesium silicate hydrated; DTXSID0052885;    LS-88604; FT-0660673; Mussolinite; Agalite; Asbestine; Snowgoose; Steatite; Steawhite;    Supreme; Cosmetic talc;    Mistron vapor; Nonfibrous talc; Steatite talc; Supreme dense; French chalk; Mistron Star; Mistron frost P; Finntalc PF; Mistron RCS; Talc (powder); IT Extra; Desertalc 57; Mistron 2SC; Nonasbestiform talc; Finntalc C10; Finntalc M05; Finntalc M15; Finntalc P40; Mistron super frost; Talcan PK-P; Micro Ace K1; Micro Ace L1; Microtalco IT Extra; Mistron 139; Beaver White 200; Fibrene C 400; P 3 (Mineral); Polytal 4641; Polytal 4725; B 13 (mineral); Magnesium silicate talc; Emtal 500; Emtal 549; Emtal 596; Emtal 599; Nytal 200; Nytal 400; Micron White 5000A; Micron White 5000P; Micron White 5000S; EX-IT; FW-XO; Talc, non-asbestos form; Crystalite CRS 6002; PK-C; PK-N; Talcron CP 44-31; Hydrous magnesium silicate; Magnesium silicate, hydrous; Alpine talc USP, bc 127; Talc (containing no asbestos); CCRIS 3656; HSDB 830; LMR 100; Lo Micron talc USP, bc 2755; NCI-C06008; TY 80; Talc, containing no asbestos fibers; EINECS 238-877-9; Talc, not containing asbestiform fibers; B 13; CI 77718; CP 10-40; CP 38-33;    MP 12-50; MP 25-38; MP 40-27; MP 45-26;    Silicates: talc (containing no asbestos); Talc (powder), containing no asbestos fibers; Silicates (<1% quartz):talc (not containing asbestos);    B 9; P 3; mineral graphite; Steat ite talc; non-fibrous talc; non-asbestiform talc; Talc [JAN]; Talc [USP:JAN]; Fibrous Non-Tremolite Talc; Silica,talc, non-asbestos form; talc, non-asbestos form, silica; Talc (containing no asbestos fibres); AKOS026749891; LS-2116; acumer 5000; Acumer 5000; acumer5000; Acumer5000; ACUMER 5000; ACUMER5000; ACUMER; Acumer; acumer; 5000; Akumer; Akümer; Akumer5000; Akumer5; Akümer5000; akümer 5000; akümer5000; silica and magnesium silicate; Carboxylate-sulfonate Copolymer Dispersant; Carboxylic Multipolymer; acumer 5000; Acumer 5000; acumer5000; Acumer5000; ACUMER 5000; ACUMER5000; ACUMER; Acumer; acumer; 5000; Akumer; Akümer; Akumer5000; Akumer5; Akümer5000; akümer 5000; akümer5000; Carboxylate-sulfonate Copolymer Dispersant; Multipolymer for Silica and Magnesium Silicate Scale Control; Carboxylic Multipolymer; Calcium Carbonate; Calcium Phosphate / Phosphonate; Iron Oxide Dispersion; Silica / Silicate; Silika; silica; Silica and Magnesium Silicate Scale Inhibitor; Akümer5000; Ambosol; carboxylic multipolymer; acumer 5000; ACUMER 5000; akumer 5000; AKUMER 5000; acumer5000; ACUMER5000; AKUMER5000; akumer5000; TH 5000; th5000; TH5000; th 5000; SILIKA; SİLİKA; sılıka; silika; sılıca; silica; SILICA; SİLİCA; MAGNEZYUM SILICAT; MAGNEZYUM SILIKAT; MAGNEZYUM SİLİCAT; MAGNEZYUM SİLİKAT; magnezyum silikat; magnezyum sılıkat; magnezyum sılıcat; magnezyum silicat; MAGNEZYUM SILICAT INHIBITORU; magnezyum sılıcat ınhıbıtoru; magnezyum silikat inhibitörü; ANTİSKALAN; antıskalan; ANTISCALAN; ANTİSCALAN; antıscalan; antiscalan; antiskalan; antıskalant; ANTISCALANT; ANTİSCALANT; antiscalant; antıscalant;antiskalant


ACUMER 5000

An excellent scale inhibitor and dispersant for silica and magnesium silicate. # NSF-60 for potable water. The ACUMER 5000 (akumer 5000) (akümer 5000) mobile phone app helps estimate a suitable dosage in the maintenance formulation for cooling circuits. 
Uses of ACUMER 5000 (akumer 5000) (akümer 5000): 
Industrial water treatment 
Benefits of ACUMER 5000 (akumer 5000) (akümer 5000): 
Excellent scale inhibition for a variety of applications including cooling circuits, boilers and RO units. 
Properties of ACUMER 5000 (akumer 5000) (akümer 5000) 
These values are typical properties and are not intended for use in preparing specifications. 
Application of ACUMER 5000 (akumer 5000) (akümer 5000) 
Boilers, Cooling Water, Membranes of ACUMER 5000 (akumer 5000) (akümer 5000) 
Phosphorus Free 
Yes 
Potable Approval of ACUMER 5000 (akumer 5000) (akümer 5000) 
Yes 
Scale Control / Inhibition of ACUMER 5000 (akumer 5000) (akümer 5000) 
Calcium Carbonate, Calcium Phosphate / Phosphonate, Iron Oxide Dispersion, Silica / Silicate 

ACUMER 5000 (akumer 5000) (akümer 5000) 
Multipolymer for Silica and Magnesium Silicate Scale Control 

Cooling water reuse is frequently limited by a ceiling on the amount of tolerable silica in the recirculation water. Normally, if silica levels exceed about 180 ppm SiO2, severe scaling can occur on heat transfer surfaces. Moreover, the scale that forms is frequently difficult or impossible to remove by conventional means. ACUMER 5000 (akumer 5000) (akümer 5000) silica control polymer has now raised that ceiling to at least 300 ppm SiO2, proven by exacting pilot studies and field trials, allowing for greater water reuse than ever before. ACUMER 5000 (akumer 5000) (akümer 5000) polymer prevents silica-based scale formation by dispersing colloidal silica and by preventing magnesium silicate scale formation at the heat transfer surfaces. The unique features of ACUMER 5000 (akumer 5000) (akümer 5000) polymer in the treatment of silica limited cooling water are presented below 

PHYSICAL PROPERTIES of ACUMER 5000 (akumer 5000) (akümer 5000) 
The typical physical properties of ACUMER 5000 (akumer 5000) (akümer 5000) polymer are listed in Table 1. 
TABLE 1 
TYPICAL PHYSICAL PROPERTIES (these do not constitute specifications) of ACUMER 5000 (akumer 5000) (akümer 5000) 
Molecular Weight of ACUMER 5000 (akumer 5000) (akümer 5000) 5000 
Total Solids, % 44.5 to 45.5 
Active Solids, % 42 
pH 2.1 to 2.6 
Brookfield Viscosity of ACUMER 5000 (akumer 5000) (akümer 5000), cp 700 max. 
Specific Gravity of ACUMER 5000 (akumer 5000) (akümer 5000) 1.2 
Bulk Density, lb/gal (g/cc) 10 (1.19) 
Lb (Kg) of 100% NaOH to 
neutralize 1 lb (kg) of polymer 0.131 
FORMATION OF SILICA-BASED SCALE of ACUMER 5000 (akumer 5000) (akümer 5000) 
Silica forms particles with different structures depending upon the pH, presence of other ions and process by which the particles are formed. The three main forms of silica encountered in cooling water are: 
• Molybdate-reactive silica: frequently referred to as dissolved silica. 
• Colloidal silica: polymerized silica particles of 0.1 micron or less. 
• Silicate scale: primarily magnesium silicate, but may also be iron or calcium silicate. 
Colloidal silica, which forms when the solubility level of silica is exceeded, is difficult to measure under field conditions, and a total silica mass balance cannot be achieved with a simple field test. The most effective method of determining total silica is described in "Standard Methods for the Examination of Water and Wastewater", 17th edition (Method 4500-SiC). A simpler method that converts other forms of silica to molybdate-reactive silica is described in Rohm and Haas Technical Bulletin FC-267, "ACUMER TST sm, Total Silica Test for High-Silica Waters". As the colloidal silica passes into the Nernst diffusion layer at the heat transfer surface, it dissolves and acquires a negative (anionic) charge. Polyvalent cations, especially magnesium, tend to react with these anionic colloidal particles effectively "gluing" them together and ultimately forming a hard, glassy magnesium silicate scale. Figure 1 shows how colloidal silica can dissolve to form silicate in the high temperature/high pH environment near a corroding cathodic surface where dissolved oxygen is reduced to hydroxide ions. These freshly formed silicate anions, added to the dissolved silica already present, can then form magnesium silicate scale (MgSiO3). In addition, colloidal silica alone can coprecipitate with magnesium hydroxide to form a scale of magnesium silicate having non-stoichiometric ratios of magnesium to silicate. 

Mechanism for Controlling Silica ACUMER 5000 (akumer 5000) (akümer 5000) 
The remarkable properties of ACUMER 5000 (akumer 5000) (akümer 5000) polymer derive in large part from its three distinctive functionalities. The weak acid (carboxylate) group provides a means of attaching the polymer to metal ions in solution and to the surfaces of particles or crystals. This enables the polymer to act as a dispersant to prevent agglomeration and deposit formation as well as stabilizing contaminants. The strong acid (sulfonate) contributes to this process by increasing the solubility and charge density of the polymer which enhances electrostatic repulsion of particles. What sets ACUMER 5000 (akumer 5000) (akümer 5000) polymer apart, however, is a unique third set of functionalities, based on balanced hydrophilicity and lipophilicity (hydrophobicity)1 
. ACUMER 5000 (akumer 5000) (akümer 5000) 
Where the other functionalities operate primarily through charge-transfer, this so-called HLB functionality promotes physical adsorption on the surfaces of contaminant particles especially at higher temperatures. By promoting adsorption, this third type of functionality also contributes to the strength of the energy barrier (or the net repulsive force) created by the polymer around the silica particle. ACUMER 5000 (akumer 5000) (akümer 5000) polymer adsorbed on the colloid surfaces provides an energy barrier that prevents precipitation and agglomeration. Moreover, even if the silica particles precipitate, they are spaced too far apart for magnesium or redissolved silicate anions to bind them together. As a result, the scale formed by these particles will be powdery and, thus, easier to remove. For additional information on these mechanisms please request the following reprints: 
"Control of Iron and Silica with Polymeric Dispersants", 
"Recent Experience in Controlling Silica and Magnesium Silicate Deposits with Polymeric Dispersants" 
1The idea of enhancing adsorption by balancing hydrophilic and lipophilic moieties is borrowed from surfactant chemists who use the term HLB (hydrophile/ lipophile balance) to describe surfactant solubility and adsorption characteristics. ACUMER 5000 (akumer 5000) (akümer 5000) polymer does not actually have surfacant-like properties, but it behaves in an analogous way. 
MAGNESIUM SILICATE SCALE ACUMER 5000 (akumer 5000) (akümer 5000) 
PREVENTION WITH ACUMER 5000 (akumer 5000) (akümer 5000) 
POLYMER ACUMER 5000 (akumer 5000) (akümer 5000) Polymer Action in Recirculating Water 
Photomicrographs using cross-polarized lenses can be used to study crystal structures. Figure 3 shows the dispersed silica using ACUMER 5000 (akumer 5000) (akümer 5000) polymer in the recirculating water versus agglomerated silica particles in Figure 2 without polymer. 

ACUMER 5000 (akumer 5000) (akümer 5000) Polymer Action at Heat Transfer Surface 
ACUMER 5000 (akumer 5000) (akümer 5000) silica control polymer also prevents formation of magnesium silicate under the conditions found near a heat transfer surface, as shown in 
Figures 4 and 5. 
PERFORMANCE OF ACUMER 5000 (akumer 5000) (akümer 5000) POLYMER 
Accelerated Pilot Cooling Tower Tests of ACUMER 5000 (akumer 5000) (akümer 5000) 
A series of 3-day pilot cooling tower (PCT) tests were run to compare the dispersing efficiency of ACUMER 5000 (akumer 5000) (akümer 5000) polymer with that of conventional 
products. The water chemistry and operating parameters of the PCT in these studies are shown in Tables 2 and 3. The treatment formulation used to evaluate polymer efficacy consisted of 2 ppm tolyltriazole (TTA), 10 ppm active polymer, and a 1/1 blend of 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) and 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP) to give 5 ppm total active phosphonate. At start-up, the formulation was fed into the system at three times the normal strength to compensate for the high concentrations of silica, calcium and magnesium.In these accelerated tests, water passed over a series of four heat transfer rods in succession. Scale formed on all four rods, with each developing more scale than its immediate predecessor. This progressive deposition was caused by the water becoming hotter as it passed over the rods in succession. As the water temperature rose, the tendency for deposits to form increased. In repeat tests, the amount of scale fluctuated dramatically when the polymer was an ineffective scale inhibitor. ACUMER 5000 (akumer 5000) (akümer 5000) polymer shows only a light dusting of scale (Figure 6), considerably better than the other polymers tested (Figures 7 and 8). Within the limits of experimental error, the scale compositions obtained with all tests were approximately the same, >80% magnesium silicate (Table 5). 

Long-Term Pilot Cooling Tests of ACUMER 5000 (akumer 5000) (akümer 5000) 
ACUMER 5000 (akumer 5000) (akümer 5000) polymer was compared to the two polymers from the previous trials in longer tests; 
1) to determine whether concentrating the water too rapidly gave an artificial negative effect, 
2) to analyze scale that might form in the cooler parts of the PCT, and 
3) to measure the impact of the polymer on corrosion. These products were evaluated in the same water under the same conditions employed in the accelerated PCT tests (Tables 2 and 3); only the cycling rate and start-up conditions were different. In the long-term trials, the water was started at 3 cycles of concentration (COC), using 2.5 times the normal treatment level, and then maintained at 5.5 COC (275 ppm SiO2) for four days to allow any silicate salts or silica to form, grow and precipitate. The water was then concentrated further to between 7.2 and 7.5 cycles of concentration over the next nine days of the test to reach a theoretical concentration of between 360 and 375 ppm SiO2 (50 ppm X 7.5). This quantity is approximately double the recommended maximum for cooling water. The results of these tests are given in Table 6. The results indicate that under the test conditions, ACUMER 5000 (akumer 5000) (akümer 5000) silica control polymer yields 10 times less silica-based scale than conventional polymaleic acid chemistry and 5 to 6 times less scale than the commercial silica control polymer. Moreover, the corrosion rate with ACUMER 5000 (akumer 5000) (akümer 5000) polymer is much 
lower than with the two other polymers. The large difference in corrosion rates may be due to underdeposit corrosion occurring with the less effective polymers. 
FIELD PERFORMANCE of ACUMER 5000 (akumer 5000) (akümer 5000) 
The benefits of ACUMER 5000 (akumer 5000) (akümer 5000) polymer have been substantiated by its performance in four field situations. In each instance, operators of the different facilities faced the problem of processing water that contained high silica levels and all overcame their difficulties by using ACUMER 5000 (akumer 5000) (akümer 5000) polymer in their cooling water treatment program. Chiller System Achieves 80% Increase in COC Plus On-Line Cleaning System Two 250-ton cooling water units with a recirculation rate of 580 gpm were used Description: to cool a high school. The units were treated with a chromate program until 1990. In 
March of 1990, the chromate treatment was replaced with molybdate/ zinc/phosphonate to comply with regulations against chromate. Deposits were controlled using 7-8 ppm active ACUMER 2000 copolymer. The pH of the system was maintained at 7.5 - 8.5. 
Problem: Total hardness of the makeup water was typically about 140 ppm, with a Ca/Mg ratio 
of about 1/1. The makeup water typically had about 45 ppm SiO2, and the system 
could only achieve about 2.5 cycles of concentration using the molybdate/phosphonate/zinc copolymer treatment. The condenser was opened in 1991 and found to have light scale containing about 25% silica with most of the balance being iron oxide. 
Solution: In one of the chiller systems, the copolymer was replaced with an equal concentration of ACUMER 5000 (akumer 5000) (akümer 5000) polymer and blowdown was reduced; all other variables remained the same. The other chiller system was maintained with the program containing ACUMER 2000 copolymer. 

Results: The system treated with ACUMER 5000 (akumer 5000) (akümer 5000) polymer achieved more than 4.5 cycles of concentration with no silica drop-out. Early in this trial, the chemical feed was stopped accidentally; a subsequent drop in recirculating water SiO2 levels suggests that some scaling probably occurred. When the chemical feed was re-established, SiO2 levels temporarily increased to higher than expected levels, which leads to the conclusion that the ACUMER 5000 (akumer 5000) (akümer 5000) polymer had removed some of the scale. This also suggests that the dispersing action of the polymer, even when underfed, resulted in the formation of a powdery scale rather than the expected glassy magnesium silicate. The powdery nature of the scale would explain its apparent on-line removal. Data showed that over 200 ppm SiO2 had been attained in the recirculating water. Winery Increases Silica in Cooling Water Past Vintage Levels of 150 ppm SiO2 System A northern California vineyard operates two 560-ton evaporative condensers using 
Descripion: makeup water1 with high silica levels of 92 ppm SiO2. The cooling water system has a capacity of 18 gallons per minute with water temperatures ranging between 75°F (24°C) and 85°F (29°C). 
Problem: Initially, a stabilized phosphate program containing HEDP, phosphoric acid, tolyltriazole and an acrylate-type polymer was used. Scale formed on the evaporative condensers when silica levels exceeded 150 ppm SiO2 in the recirculating water. This deposit was found to contain high levels of silicon and magnesium. 
Results: Our customer replaced the existing polymer in his formulation with ACUMER 5000 (akumer 5000) (akümer 5000) polymer. This formulation was dosed into the system to maintain 13 ppm residual orthophosphate and 10-15 ppm active ACUMER 5000 (akumer 5000) (akümer 5000) polymer in the recirculating water. The recirculating water contains 400 ppm M-Alkalinity and had a pH between 8.5 and 8.7. The customer was able to increase cooling water cycles from 1.6 to 3 COC allowing up to 276 ppm SiO2 in the system. Thorough visual inspections, after 2 and 5 months, condenser tubes were free of scale. By switching to ACUMER 5000 (akumer 5000) (akümer 5000) polymer, this customer was able to cut his chemical usage by almost half and save 4 million gallons of water per year. 1 Make-up water analysis: pH 7.8, 138 ppm T-Alkalinity, 92 ppm SiO2, 35 ppm Ca as CaCO3, 11 ppm Mg, 7.4 ppm SO4, 18 ppm Cl, <0.1 ppm Fe, <0.3 ppm Mn, 270 ppm TDS. Cooling System Doubles COC in San Joaquin Valley, California System Two evaporative condenser towers rated at 500 tons were used to cool a large computer 
Description: computer facility. One tower was always kept as a backup to ensure continuous operation. The evaporative condensers consist of rows of tubes on the inside of the tower. 
The tower water cascades downward to directly contact the condenser tubes leaving a scale deposit if the water significantly exceeds the normal operating levels of about 180 ppm SiO2 and about 480 ppm (maximum) M-alkalinity. The original treatment used HEDP, benzotriazole and polymaleic acid with a supplemental feed of polyacrylic acid. Problem: The makeup water typically had 90-110 ppm SiO2, allowing only about 2 cycles of concentration. Due to severe drought conditions in this area for the previous 5 years, water was not readily available and had to be reused to the maximum extent possible. Solution: In 1991, the polymaleic acid and polyacrylic acid scale inhibitors used in the old treatment were replaced with an equal weight of ACUMER 5000 (akumer 5000) (akümer 5000) polymer. The treatment was fed to maintain the same levels as before, but the bleedoff was reduced. 
Results: With ACUMER 5000 (akumer 5000) (akümer 5000) polymer, the system maintained up to about 4 cycles of concentration without scale or corrosion. Recirculation water has up to 300 ppm total silica and about 650 ppm M-alkalinity (maximum). Benefits of the reduction in bleedoff include: 
• A calculated 30% reduction in water usage under typical conditions. 
• A calculated 30% reduction in chemical usage. 
• An increase in holding time which allows the biocide to work more 
effectively (since the makeup water has a high organism count). 

Scale Problem Eliminated at Ice-Making Plant 
System An ice-making plant with a refrigeration capacity of 270 tons had a history of Description: scale problems, especially on the condenser coils. Silica levels in the makeup water were 46 ppm SiO2. System temperature ranged between 83°F (28°C) and 91°F (33°C). 
Problem: The water was treated with an all-organic program which left heavy deposits of silica. A thorough cleaning with ammonium bifluoride and hydrochloric acid was performed in the summer of 1992 to remove the heavy deposits. Between August and November of 1992, the COC were maintained at low levels (less than 2) to prevent silica scale. Under these conditions, CaCO3 still formed on the condenser coils, with head pressure on the condenser side measuring approximately 230 psi. Solution: ACUMER 5000 (akumer 5000) (akümer 5000) polymer was added to the system to maintain 15 ppm active polymer in 
the recirculationg water, and COC were gradually increased to 6 to 9. 
Results: By February of 1993, head pressure had dropped to the lowest level, 215 psi, indicating no scale. Theoretical silica levels approached 400 ppm SiO2. Ten months after changing the formulation to one containing ACUMER 5000 (akumer 5000) (akümer 5000) polymer, the plant continued to operate without problems. 
OTHER APPLICATIONS of ACUMER 5000 (akumer 5000) (akümer 5000) 
Boilers of ACUMER 5000 (akumer 5000) (akümer 5000) 
The superior hydrothermal stability of ACUMER 5000 (akumer 5000) (akümer 5000) polymer enables its use for controlling magnesium silicate scale in boilers operating up to about 600 psig (42 kg/cm2). Above 600 psig, it is recommended that the silica be removed from the feedwater by external treatment such as ion exchange. 
Reverse Osmosis 
The ability of ACUMER 5000 (akumer 5000) (akümer 5000) polymer to disperse colloidal silica as well as other particulates makes it suitable in formulations for fouling prevention in RO membranes used to treat high-silica water. 

Water Analysis of ACUMER 5000 (akumer 5000) (akümer 5000): Cycles of (at steady state) Makeup Recirculating Concentration pH 7.8-8.1 8.9-9.0 - 
Conductivity, µmho 330-360 1000-1030 2.9 
M-Alkalinity, as CaCO3 154-180 536-540 3.2 
Ca, as CaCO3 60-80 236-264 3.6 
Mg, as CaCO3 56-80 260-268 3.9 
Silica, as SiO2 60-70 265-300 4.2 

TOXICITY of ACUMER 5000 (akumer 5000) (akümer 5000) 
Toxicity data on ACUMER 5000 (akumer 5000) (akümer 5000) silica control polymer are presented in Table 7. 
SAFE HANDLING INFORMATION ACUMER 5000 (akumer 5000) (akümer 5000) 
Caution: For Industrial Use Only! Keep Out of Reach of Children! Wear chemical splash goggles and impervious gloves when handling. An approved respirator, suitable for the concentrations encountered, should be worn. 
FIRST AID INFORMATION of ACUMER 5000 (akumer 5000) (akümer 5000) 
Skin Contact Wash affected skin area thoroughly with soap and water. Consult a physician if irritation persists. 
Eye Contact Flush eye immediately with plenty of water for at least 15 minutes. Consult a physician if irritation persists. Inhalation Move victim to fresh air. Ingestion If victim is conscious, dilute product by giving 2 glasses of water to drink and then call a physician. If victim is unconscious, call a physician immediately. Never give an unconscious person anything to drink. 
MATERIAL SAFETY DATA SHEETS of ACUMER 5000 (akumer 5000) (akümer 5000) 
Rohm and Haas Company maintains Material Safety Data Sheets (MSDS) on all of its products. These contain important information that you may need to protect your employees and customers against any known health and safety hazards associated with our products. We recommend you obtain copies of MSDS for our products from your local Rohm and Haas technical representative or the Rohm and Haas Company. In addition, we recommend you obtain copies of MSDS from your suppliers of other raw materials used with our product. Under the OSHA Hazard Communication Standard, workers must have access to and understand MSDS on all hazardous substances to which they are exposed. Thus, it is important that appropriate training and information be provided to all employees and that MSDS be available on any hazardous products in their workplace. 

ACUMER 5000 (akumer 5000) (akümer 5000) 
Silica and Magnesium Silicate Scale Inhibitor 
Description of ACUMER 5000 (akumer 5000) (akümer 5000) 
Rohm and Haas ACUMER 5000 (akumer 5000) (akümer 5000) is a superior scale inhibitor and dispersant for silica and magnesium silicate in recirculating cooling circuits and boilers. 

Used of ACUMER 5000 (akumer 5000) (akümer 5000) in 
Water Treatment ACUMER 5000 (akumer 5000) (akümer 5000) 
Cooling waters ACUMER 5000 (akumer 5000) (akümer 5000) 
Boilers ACUMER 5000 (akumer 5000) (akümer 5000) 
Industrial reverse osmosis ACUMER 5000 (akumer 5000) (akümer 5000) 
Pools and fountains ACUMER 5000 (akumer 5000) (akümer 5000) 
Advantages of ACUMER 5000 (akumer 5000) (akümer 5000) 

Prevent the formation of deposits on heat transfer surfaces 
Prevent inorganic and sedimentation fouling 
Effectively inhibits magnesium silicate 
Excellent silica dispersant 
Outstanding iron, phosphate scale inhibitor 
Stabilizes corrosion inhibitors 
Boiler sludge dispersant 
Typical Properties 

These properties are typical but do not constitute specifications. 

Appearance    Dark yellow to brown clear solution*
Average Molecular weight    5,000 (Mw)
% Total Solids    45
% Active Solids    42
pH as is (at 25°C)    2.May
Bulk density (at 25°C)    1.Şub
Viscosity Brookfield (mPa.s/cps at 25°C)    400
Neutralization    0.13g of NaOH (100%) per g of ACUMER 5000 (akumer 5000) (akümer 5000)
*A slight haze may appear; this does not affect the intrinsic properties of the product or its performance. 
Chemistry and Mode of Action ACUMER 5000 (akumer 5000) (akümer 5000) is a proprietary multifunctional polymer with a molecular weight of 5000 that provides outstanding silica and magnesium silicate scale inhibition. ACUMER 5000 (akumer 5000) (akümer 5000) prevents silica-based scale formation by dispersing colloidal silica and by preventing magnesium silicate scale formation at heat transfer surfaces. 

Performance of ACUMER 5000 (akumer 5000) (akümer 5000) 
Control of silica-based scale is a complex problem due to the many forms of silica species that exist: 

Molybdate-reactive silica: frequently referred to as dissolved silica. Colloidal silica: polymerized silica particles of 0.1 microns or less. 
Silica scale: primarily magnesium silicate, but may also be iron or calcium silicate. Colloidal silica can dissolve to form silicate in the high temperature/high pH environment near a corroding cathodic surface where dissolved oxygen is reduced to hydroxide ions. These freshly formed silicate anions, added to the dissolved silica already present, can then form magnesium silicate scale (MgSiO3). In addition, colloidal silica alone can co-precipitate with magnesium hydroxide to form a scale of magnesium silicate having non-stoichiometric ratios of magnesium to silica. 

Normally, if silica levels exceed about 180 ppm SiO2 in the recirculation water of a cooling circuit, severe scaling can occur on heat transfer surfaces. Moreover, the scale that forms is frequently difficult or impossible to remove by conventional means. 

ACUMER 5000 (akumer 5000) (akümer 5000) has been evaluated under field conditions, allowing up to 300 ppm silica in the recirculating water without scale. Case histories are available upon request from your local technical representative. 

Applications of ACUMER 5000 (akumer 5000) (akümer 5000) 

Recirculating cooling circuits 
ACUMER 5000 (akumer 5000) (akümer 5000) offers unique features for the treatment of silica-limited cooling waters, allowing up to at least 300 ppm silica in the recirculating water without scale or corrosion problems 

Boilers ACUMER 5000 (akumer 5000) (akümer 5000) 
The superior hydrothermal stability of ACUMER 5000 (akumer 5000) (akümer 5000) enables its use for controlling magnesium silicate scale in boilers operating up to about 900 psig, although silica may carry over in steam at > 600 psig. 

Benefits of ACUMER 5000 (akumer 5000) (akümer 5000) 
Keeps surfaces clean for maximum heat transfer and enhances the performance of organic corrosion inhibitors. Has excellent thermal and chemical stability. Can be formulated at any pH without degradation. Exhibits a very good stability in the presence of hypochlorite. Contains no phosphorus, making its use acceptable where legislation requires that discharge waters contain low or no phosphorus. 

Chemistry and Mode of Action 
ACUMER 5000 (akumer 5000) (akümer 5000) is a proprietary multifunctional polymer with a molecular weight of 5000 that provides exceptional silica and magnesium silicate scale inhibition. ACUMER 5000 (akumer 5000) (akümer 5000) helps prevent silica-based scale formation by dispersing colloidal silica and by minimizing magnesium silicate scale formation at heat transfer surfaces. Performance Control of silica-based scale is a complex problem due to the many forms of silica species that exist: 
• Molybdate-reactive silica: frequently referred to as dissolved silica. 
• Colloidal silica: polymerized silica particles of 0.1 microns or less. 
• Silica scale: primarily magnesium silicate, but may also be iron or calcium silicate. 
Colloidal silica can dissolve to form silicate in the high temperature/high pH environment near a corroding cathodic surface where dissolved oxygen is reduced to hydroxide ions. These freshly formed silicate anions, added to the dissolved silica already present, can then form magnesium silicate scale (MgSiO3). In addition, colloidal silica alone can co-precipitate with magnesium hydroxide to form a scale of magnesium silicate having non-stoichiometric ratios of magnesium to silica. Normally, if silica levels exceed about 180 ppm SiO2 in the recirculation water of a cooling circuit, severe scaling can occur on heat transfer surfaces. Moreover, the scale that forms is frequently difficult or impossible to remove by conventional means. ACUMER 5000 (akumer 5000) (akümer 5000) has been evaluated under field conditions, allowing up to 300 ppm silica in the recirculating water without scale. Case histories are available upon request from your local technical representative. 
ACUMER 5000 (akumer 5000) (akümer 5000) Silica and Magnesium Silicate Scale Inhibitor / Dow Coating Materials 
Applications of ACUMER 5000 (akumer 5000) (akümer 5000) • Recirculating cooling circuits 
ACUMER 5000 (akumer 5000) (akümer 5000) offers distinct features for the treatment of silica-limited cooling waters, allowing up to at least 300 ppm silica in the recirculating water without scale or corrosion problems. 
• Boilers 
The excellent hydrothermal stability of ACUMER 5000 (akumer 5000) (akümer 5000) makes it an ideal choice for use in controlling magnesium silicate scale in boilers operating up to about 900 psig, although silica may carry over in steam at >600 psig. 
Benefits of ACUMER 5000 (akumer 5000) (akümer 5000) 
• Helps keep surfaces clean for maximum heat transfer and enhances the performance of organic corrosion inhibitors. 
• Has excellent thermal and chemical stability. 
• Can be formulated at any pH without degradation. 
• Exhibits a very good stability in the presence of hypochlorite. 
• Contains no phosphorus, making its use acceptable where legislation requires that discharge waters contain low or no phosphorus. 

Description of ACUMER 5000 (akumer 5000) (akümer 5000) 
ACUMER 5000 (akumer 5000) (akümer 5000) is a superior scale inhibitor and dispersant for silica and magnesium silicate in recirculating cooling circuits and boilers. 

Advantages of ACUMER 5000 (akumer 5000) (akümer 5000) 
Effectively inhibits magnesium silicate 
Excellent silica dispersant 
Outstanding iron, phosphate scale inhibitor 
Stabilizes corrosion inhibitors 
Boiler sludge dispersant 
Prevents the formation of deposits on heat transfer surfaces 
Prevents inorganic and sedimentation fouling 

Properties of ACUMER 5000 (akumer 5000) (akümer 5000): 
IR-5000 carboxylate-sulfonate copolymer (similar to ACUMER 5000 (akumer 5000) (akümer 5000)) is a superior scale inhibitor and dispersant. It has good inhibition for silica and magnesium silicate when used in recirculation cooling circuits and boilers. It is a superior phosphate scale inhibitor for dry or hydrated ferric oxide. Acting as a rust inhibitor, IR-5000 can also be used in systems like Industrial RO, pools, and fountains, etc. (Similar to ACUMER 5000 (akumer 5000) (akümer 5000)) 

Synthetic magnesium silicates (ACUMER 5000 (akumer 5000) (akümer 5000)) are white, odorless, finely divided powders formed by the precipitation reaction of water-soluble sodium silicate (water glass) and a water-soluble magnesium salt such as magnesium chloride, magnesium nitrate or magnesium sulfate. The composition of the precipitate depends on the ratio of the components in the reaction medium, the addition of the correcting substances, and the way in which they are precipitated.[1][2][3] 
The molecular formula is typically written as MgO:XSiO2, where X denotes the average mole ratio of SiO2 to MgO. The product is hydrated and the formula is sometimes written MgO:XSiO2•H2O to show the water of hydration. 

Properties of ACUMER 5000 (akumer 5000) (akümer 5000) 
Unlike natural magnesium silicates like talc and forsterite olivine which are crystalline, synthetic magnesium silicates are amorphous.[1] Synthetic magnesium silicates are insoluble in water or alcohol.[4] The particles are usually porous, and the BET surface area can range from less than 100 m2/g to several hundred m2/g. 

  • Share !
E-NEWSLETTER