Le benzène est un produit chimique qui est un liquide incolore ou jaune pâle à température ambiante.
Le benzène est un composé chimique organique de formule moléculaire C6H6.
Le benzène a une odeur sucrée et est hautement inflammable.
Numéro CAS : 71-43-2
Numéro CE : 200-753-7
Formule chimique : C6H6
Masse molaire : 77,81 grammes/mole
Synonymes: benzène, benzol, 71-43-2, Cyclohexatriène, benzol, Pyrobenzol, Benzine, Benzène, Hydrure de phényle, Naphta de charbon, Pyrobenzol, Phène, Naphta minéral, Bicarbure d'hydrogène, Benzolène, Benzine, [6]Annulène, Moteur benzol, Benzène, Benzolo, Fenzen, Benzène de nitration, (6) Annulène, Benzol 90, NCI-C55276, Numéro de déchet Rcra U019, benzine, 1,3,5-cyclohexatriène, NSC 67315, ONU 1114, CHEBI:16716, iodure de phénylmanganèse, CHEMBL277500, MFCD00003009, NSC-67315, J64922108F, Benzeen [Néerlandais], Benzen [polonais], Fenzen [Tchèque], Benzolo [Italien], BNZ, Benzine (Obs.), Benzine (Obs.), Caswell n° 077, Benzène 100 microg/mL dans du méthanol, Benzène, réactif ACS, >=99.0%, Benzène pur, CCRIS 70, 54682-86-9, HSDB 35, 62485-97-6, EINECS 200-753-7, UN1114, benzène, iodomanganèse(1+), Code chimique des pesticides EPA 008801, Benzolum, Benzène (y compris le benzène de l'essence), p-benzène, benzène-, AI3-00808, C6H6, 26181-88-4, 1hyz, 1swi, UNII-J64922108F, [6]-annulène, Qualité Benzène ACS, Benzène, pour HPLC, {[6]Annulène}, Ph-H, Phényle; Radical Phényle, 2z9g, 4i7j, BENZÈNE [VANDF], BENZINUM [HPUS], Combo benzène + aniline, BENZÈNE [HSDB], BENZÈNE [CIRC], BENZÈNE (BENZOL), BENZÈNE [MI], BENZÈNE [MART.], Benzène, marqué au carbone 14 et au tritium, WLN : RH, BENZÈNE [USP-RS], BENZÈNE [WHO-DD], ID d'épitope : 116867, Benzène, grade de purification, CE 200-753-7, Benzène, étalon analytique, Benzène, LR, >=99%, ghl.PD_Mitscher_leg0.503, Benzène, anhydre, 99,8 %, Benzène, AR, >=99,5 %, DTXSID3039242, 3,4-DNH, 1l83, 220l, 223l, Benzène 10 microg/mL dans du méthanol, ZINC967532, trans-N-méthylphénylcyclopropylamine, ACT02832, BCP26158, Benzène 20 microg/mL dans la triacétine, Benzène, pour HPLC, >=99,8 %, Benzène, pour HPLC, >=99,9 %, NSC67315, Tox21_202487, Radical 1,3-cyclohexadiène-5,6-diyle, BDBM50167939, BM 613, STL264205, Benzène 5000 microg/mL dans du méthanol, Benzène, purum, >=99.0% (GC), AKOS008967253, Benzène, SAJ première année,> = 99,0%, CAS-71-43-2, ACÉTONE IMPURETÉ C [EP IMPURETÉ], Benzène [UN1114] [Liquide inflammable], Benzène, qualité spéciale JIS, >=99,5 %, érythro-phényl-2-pipéridyl-carbinol,(-), NCGC00090744-01, NCGC00090744-02, NCGC00163890-01, NCGC00163890-02, NCGC00260036-01, trans-N,N-Diméthylphénylcyclopropylamine, CC-34,(+/-), GNA, DS-002542, B0020, FT-0622636, FT-0622637, FT-0622667, FT-0627856, FT-0657604, Q0038, Q2270, Benzène 30 microg/mL dans du N,N-Diméthylacétamide, Benzène, qualité spectrophotométrique ACS, >=99%, C01407, Benzène, ReagentPlus(R), sans thiophène, >=99%, Benzène, pur. papa, Reag. Ph.Eur., >=99.7%, Q26841227, BIPERIDEN HYDROCHLORIDE IMPURETÉ F [EP IMPURETÉ], Benzène, étalon secondaire pharmaceutique ; Matériau de référence certifié, Benzène, puriss., absolu, sur tamis moléculaire (H2O <=0.005%), >=99.5% (GC), 25053-22-9, 200-753-7 [EINECS], 71-43-2 [RN], benzine [néerlandais], Benzen [tchèque], Benzen [Allemand], Benzen [Turc], Benzène [ACD/Index Name] [ACD/IUPAC Name] [Wiki], Benzène [Français] [ACD/IUPAC Name], Benzeno [Portugais], Benzine, Benzol [Allemand] [Nom ACD/IUPAC], Benzolo [Italien], MFCD00003009 [numéro MDL], MFCD00198116 [numéro MDL], Annulène, Benceno [Espagnol] [Nom ACD/IUPAC], benzine, Benzolum, Bnz, (1,2,3,5-2H4)Benzène [Nom ACD/IUPAC], (2H)Benzène, (6)annulène, 14941-52-7 [RN], 14941-53-8 [RN], 1684-46-4 [RN], 19467-24-4 [RN], 200-753-7MFCD00003009, 462-80-6 [RN], BENZÈNE (1,3,5-D3), Benzène, anhydre, ACS, Benzène-1,2,4,5-d4, Benzène-1,2,4-d3, Benzène-1,2-d2, Benzène-1,3-d2, Benzène-1,4-d2, Benzène-d2-1, Benzine, benzol, Benzolène, Phène, hydrure de phényle, Pyrobenzol, Pyrobenzol, WLN : RH
Le benzène est un produit chimique liquide incolore ou jaune clair à température ambiante.
Le benzène est principalement utilisé comme solvant dans les industries chimiques et pharmaceutiques, comme matière première et intermédiaire dans la synthèse de nombreux produits chimiques et dans l'essence.
Le benzène est produit par des processus naturels et artificiels.
Le benzène est un composant naturel du pétrole brut, qui est la principale source de benzène produit aujourd'hui.
Les autres sources naturelles comprennent les émissions de gaz des volcans et les incendies de forêt.
Le benzène est l'hydrocarbure aromatique organique le plus simple.
Le benzène est l'un des produits pétrochimiques élémentaires et un constituant naturel du pétrole brut.
Le benzène a une odeur d'essence et est un liquide incolore. Le benzène est de nature hautement toxique et cancérigène.
Le benzène est principalement utilisé dans la production de polystyrène.
Le benzène est une substance naturelle produite par les volcans et les incendies de forêt et présente dans de nombreuses plantes et animaux, mais le benzène est également un produit chimique industriel majeur fabriqué à partir de charbon et de pétrole.
En tant que produit chimique pur, le benzène est un liquide clair et incolore.
Dans l'industrie, le benzène est utilisé pour fabriquer d'autres produits chimiques ainsi que certains types de plastiques, de détergents et de pesticides.
Le benzène est également un composant de l'essence.
Le benzène est un liquide incolore et inflammable avec une odeur sucrée.
Le benzène s'évapore rapidement lorsqu'il est exposé à l'air.
Le benzène se forme à partir de processus naturels, tels que les volcans et les incendies de forêt, mais la plupart des gens sont exposés au benzène par les activités humaines.
Le benzène est l'un des 20 produits chimiques les plus utilisés aux États-Unis.
Le benzène est principalement utilisé pour fabriquer d'autres produits chimiques, notamment des plastiques, des résines, des lubrifiants, des caoutchoucs, des colorants, des détergents, des médicaments et des pesticides.
Dans le passé, le benzène était également couramment utilisé comme solvant industriel (une substance qui peut dissoudre ou extraire d'autres substances) et comme additif à l'essence, mais ces utilisations ont été considérablement réduites au cours des dernières décennies.
Le benzène est également un élément naturel du pétrole brut et de l'essence (et donc des gaz d'échappement des véhicules à moteur), ainsi que de la fumée de cigarette.
Le benzène est enregistré dans le cadre du règlement REACH et est fabriqué et/ou importé dans l'Espace économique européen, pour un usage intermédiaire uniquement.
Le benzène est utilisé dans les articles, dans la formulation ou le reconditionnement, sur les sites industriels et dans la fabrication.
Benzène (C6H6), hydrocarbure aromatique organique le plus simple et composé parent de nombreux composés aromatiques importants.
Le benzène est un liquide incolore avec une odeur caractéristique et est principalement utilisé dans la production de polystyrène.
Le benzène est hautement toxique et est un cancérogène connu.
L'exposition au benzène peut provoquer une leucémie.
En conséquence, il existe des contrôles stricts sur les émissions de benzène.
Le benzène s'évapore très rapidement dans l'air.
La vapeur de benzène est plus lourde que l'air et peut s'enfoncer dans les zones basses.
Le benzène ne se dissout que légèrement dans l'eau et flottera au-dessus de l'eau.
La molécule de benzène est composée de six atomes de carbone réunis dans un cycle plan avec un atome d'hydrogène attaché à chacun.
Parce que le benzène ne contient que des atomes de carbone et d'hydrogène, le benzène est classé comme un hydrocarbure.
Le benzène est un constituant naturel du pétrole et fait partie des produits pétrochimiques élémentaires.
En raison des liaisons pi continues cycliques entre les atomes de carbone, le benzène est classé comme un hydrocarbure aromatique.
Le benzène est un liquide incolore et hautement inflammable avec une odeur sucrée, et est en partie responsable de l'arôme de l'essence.
Le benzène est principalement utilisé comme précurseur dans la fabrication de produits chimiques à structure plus complexe, tels que l'éthylbenzène et le cumène, dont des milliards de kilogrammes sont produits chaque année.
Bien que le benzène soit un produit chimique industriel majeur, le benzène trouve une utilisation limitée dans les articles de consommation en raison de la toxicité du benzène.
Le benzène est formé à la fois de processus naturels et d'activités humaines.
Les sources naturelles de benzène comprennent les volcans et les incendies de forêt.
Le benzène fait également naturellement partie du pétrole brut, de l'essence et de la fumée de cigarette.
Le benzène est largement utilisé aux États-Unis.
Le benzène se classe dans le top 20 des produits chimiques pour le volume de production.
Certaines industries utilisent le benzène pour fabriquer d'autres produits chimiques qui sont utilisés pour fabriquer des plastiques, des résines, du nylon et des fibres synthétiques.
Le benzène est également utilisé pour fabriquer certains types de lubrifiants, de caoutchoucs, de colorants, de détergents, de médicaments et de pesticides.
Le benzène est un hydrocarbure aromatique liquide clair, incolore, hautement inflammable et volatil avec une odeur d'essence.
Le benzène se trouve dans les pétroles bruts et comme sous-produit des processus de raffinage du pétrole.
Dans l'industrie, le benzène est utilisé comme solvant, comme intermédiaire chimique, et est utilisé dans la synthèse de nombreux produits chimiques.
L'exposition au benzène provoque des symptômes neurologiques et affecte la moelle osseuse, provoquant une anémie aplasique, des saignements excessifs et des dommages au système immunitaire.
Le benzène est un cancérigène humain connu et est lié à un risque accru de développer des cancers lymphatiques et hématopoïétiques, une leucémie myéloïde aiguë, ainsi qu'une leucémie lymphoïde chronique.
Le benzène est un liquide incolore à odeur sucrée.
Le benzène s'évapore très rapidement dans l'air et se dissout légèrement dans l'eau.
Le benzène est hautement inflammable et se forme à la fois à partir de processus naturels et d'activités humaines.
Le benzène est largement utilisé aux États-Unis; Le benzène se classe dans le top 20 des produits chimiques pour le volume de production.
Certaines industries utilisent le benzène pour fabriquer d'autres produits chimiques qui sont utilisés pour fabriquer des plastiques, des résines, du nylon et des fibres synthétiques.
Le benzène est également utilisé pour fabriquer certains types de caoutchoucs, de lubrifiants, de colorants, de détergents, de médicaments et de pesticides.
Les sources naturelles de benzène comprennent les volcans et les incendies de forêt.
Le benzène fait également naturellement partie du pétrole brut, de l'essence et de la fumée de cigarette.
Le benzène se présente sous la forme d'un liquide clair et incolore avec une odeur de pétrole.
Point d'éclair inférieur à 0 °F.
Moins dense que l'eau et légèrement soluble dans l'eau.
Donc flotte sur l'eau.
Vapeurs plus lourdes que l'air.
sont
L'air extérieur contient de faibles niveaux de benzène provenant de la fumée de tabac, des stations-service, des gaz d'échappement des véhicules à moteur et des émissions industrielles.
L'air intérieur contient généralement des niveaux de benzène plus élevés que ceux de l'air extérieur.
Le benzène dans l'air intérieur provient de produits contenant du benzène tels que les colles, les peintures, la cire pour meubles et les détergents.
L'air autour des sites de déchets dangereux ou des stations-service peut contenir des niveaux de benzène plus élevés que dans d'autres zones.
Les fuites de benzène provenant de réservoirs de stockage souterrains ou de sites de déchets dangereux contenant du benzène peuvent contaminer l'eau de puits.
Les personnes travaillant dans les industries qui fabriquent ou utilisent du benzène peuvent être exposées aux niveaux les plus élevés de benzène.
Une source majeure d'exposition au benzène est la fumée de tabac.
Le benzène agit en empêchant les cellules de fonctionner correctement.
Par exemple, le benzène peut empêcher la moelle osseuse de produire suffisamment de globules rouges, ce qui peut entraîner une anémie.
De plus, le benzène peut endommager le système immunitaire en modifiant les taux sanguins d'anticorps et en provoquant la perte de globules blancs.
La gravité de l'empoisonnement causé par le benzène dépend de la quantité, de la voie et de la durée de l'exposition, ainsi que de l'âge et de l'état de santé préexistant de la personne exposée.
Utilisations du benzène :
À une certaine époque, le benzène était presque entièrement obtenu à partir de goudron de houille.
Cependant, depuis environ 1950, ces méthodes ont été remplacées par des procédés à base de pétrole.
Plus de la moitié du benzène produit chaque année est transformé en éthylbenzène, puis en styrène, puis en polystyrène.
La deuxième plus grande utilisation du benzène est dans la préparation du phénol.
D'autres utilisations incluent la préparation d'aniline (pour les colorants) et de dodécylbenzène (pour les détergents).
Le benzène est utilisé comme constituant dans les carburants automobiles; comme solvant pour les graisses, les cires, les résines, les huiles, les encres, les peintures, les plastiques et le caoutchouc ; dans l'extraction d'huiles de graines et de noix; et en impression photogravure.
Le benzène est également utilisé comme intermédiaire chimique.
Le benzène est également utilisé dans la fabrication de détergents, d'explosifs, de produits pharmaceutiques et de colorants.
Le benzène était autrefois utilisé comme solvant dans les encres, le caoutchouc, les laques et les décapants.
Aujourd'hui, le benzène est principalement utilisé dans des processus fermés pour synthétiser des produits chimiques organiques.
L'essence dans certains pays contient une forte concentration de benzène (jusqu'à 30 % ); la moyenne américaine est de 1 à 3 %.
Les travailleurs qui enlèvent ou nettoient les réservoirs de stockage souterrains peuvent être exposés à des niveaux importants.
L'essence en Amérique du Nord contient maintenant environ 1 % de benzène.
L'Union européenne (UE) a réduit en 2000 la teneur maximale autorisée en benzène dans l'essence de 5 % à 1 % en volume.
Les expositions moyennes dans l'industrie pétrolière suédoise sont bien inférieures aux limites d'exposition professionnelle suédoises.
L'EPA limite les émissions de benzène à partir de sources ponctuelles spécifiques.
Le niveau maximal de contaminant dans l'eau potable est de 5 ppb.
La FDA interdit l'utilisation du benzène dans les aliments.
Le benzène est utilisé dans la fabrication de produits chimiques industriels tels que les polymères, les détergents, les pesticides, les produits pharmaceutiques, les colorants, les plastiques, les résines.
Le benzène est un solvant organique utilisé pour les cires, les résines, les huiles, le caoutchouc naturel, etc.
Le benzène est utilisé pour l'impression et la lithographie, la peinture, le caoutchouc, le nettoyage à sec, les adhésifs et revêtements, les détergents.
Le benzène est utilisé pour fabriquer des produits chimiques utilisés dans la fabrication de produits industriels tels que des colorants, des détergents, des explosifs, des pesticides, du caoutchouc synthétique, des plastiques et des produits pharmaceutiques.
Le benzène se trouve dans l'essence et des traces se trouvent dans la fumée de cigarette.
Le benzène a été interdit en tant qu'ingrédient dans les produits destinés à être utilisés à la maison, y compris les jouets.
Le benzène a une odeur douce et aromatique, semblable à celle de l'essence.
La plupart des individus peuvent commencer à sentir le benzène dans l'air entre 1,5 et 4,7 ppm.
Le seuil d'odeur fournit généralement un avertissement adéquat pour les concentrations d'exposition extrêmement dangereuses, mais est inadéquat pour les expositions plus chroniques.
Le benzène est souvent utilisé comme intermédiaire pour fabriquer des produits chimiques nécessaires à la production de plastiques, de résines, de nylon et d'autres fibres synthétiques.
Le benzène est également utilisé pour fabriquer certains types de caoutchoucs, de lubrifiants, de colorants, de détergents, de médicaments et de pesticides.
Les sources naturelles de benzène comprennent les émissions des volcans, les incendies de forêt, le pétrole brut, l'essence et la fumée de cigarette.
Le benzène est utilisé principalement comme intermédiaire pour fabriquer d'autres produits chimiques, surtout l'éthylbenzène (et d'autres alkylbenzènes), le cumène, le cyclohexane et le nitrobenzène.
En 1988, le benzène a été signalé que les deux tiers de tous les produits chimiques figurant sur les listes de l'American Chemical Society contenaient au moins un cycle benzénique.
Plus de la moitié de la production totale de benzène est transformée en éthylbenzène, un précurseur du styrène, qui est utilisé pour fabriquer des polymères et des plastiques comme le polystyrène.
Environ 20 % de la production de benzène est utilisée pour fabriquer du cumène, nécessaire à la production de phénol et d'acétone pour les résines et les adhésifs.
Le cyclohexane consomme environ 10 % de la production mondiale de benzène.
Le benzène est principalement utilisé dans la fabrication de fibres de nylon, qui sont transformées en textiles et en plastiques techniques.
De plus petites quantités de benzène sont utilisées pour fabriquer certains types de caoutchoucs, de lubrifiants, de colorants, de détergents, de médicaments, d'explosifs et de pesticides.
En 2013, le plus grand pays consommateur de benzène était la Chine, suivie des États-Unis.
La production de benzène est actuellement en expansion au Moyen-Orient et en Afrique, tandis que les capacités de production en Europe de l'Ouest et en Amérique du Nord stagnent.
Le toluène est maintenant souvent utilisé comme substitut du benzène, par exemple comme additif pour carburant.
Les propriétés de solvant des deux sont similaires, mais le toluène est moins toxique et a une gamme de liquides plus large.
Le toluène est également transformé en benzène.
Composant de l'essence :
En tant qu'additif pour essence (essence), le benzène augmente l'indice d'octane et réduit le cognement.
En conséquence, l'essence contenait souvent plusieurs pour cent de benzène avant les années 1950, lorsque le plomb tétraéthyle a remplacé le benzène comme additif antidétonant le plus largement utilisé.
Avec l'élimination mondiale de l'essence au plomb, le benzène a fait un retour en tant qu'additif pour l'essence dans certains pays.
Aux États-Unis, les inquiétudes suscitées par les effets négatifs du benzène sur la santé et la possibilité que du benzène pénètre dans les eaux souterraines ont conduit à une réglementation stricte de la teneur en benzène de l'essence, avec des limites généralement autour de 1 %.
Les spécifications européennes de l'essence contiennent désormais la même limite de 1 % sur la teneur en benzène.
L'Environmental Protection Agency des États-Unis a introduit de nouvelles réglementations en 2011 qui ont abaissé la teneur en benzène dans l'essence à 0,62 %.
Dans de nombreuses langues européennes, le mot pétrole ou essence est un apparenté exact de "benzène".
Procédés industriels à risque d'exposition :
Préparation et coulée du métal
Production et raffinage du pétrole
Travailler avec des colles et des adhésifs
Lutte contre l'incendie
Tannage et traitement du cuir
Brûler des polymères synthétiques
Activités à risque d'exposition :
Fumer des cigarettes
Préparation et montage de peaux d'animaux (taxidermie)
Utilisations sur sites industriels :
Le benzène est utilisé dans les produits suivants : produits de revêtement, charges, mastics, plâtres, pâte à modeler, produits de traitement de surface non métalliques, produits chimiques de laboratoire et polymères.
Le benzène a une utilisation industrielle aboutissant à la fabrication d'une autre substance (utilisation d'intermédiaires).
Le benzène est utilisé dans les domaines suivants : formulation de mélanges et/ou reconditionnement.
Le benzène est utilisé pour la fabrication de : produits en caoutchouc et produits chimiques.
Le rejet dans l'environnement de benzène peut résulter d'une utilisation industrielle : dans la production d'articles, en tant qu'étape intermédiaire dans la fabrication ultérieure d'une autre substance (utilisation d'intermédiaires), dans la formulation de mélanges et en tant qu'auxiliaire technologique.
D'autres rejets de benzène dans l'environnement sont susceptibles de se produire à partir de : l'utilisation à l'intérieur.
Utilisations industrielles du benzène :
Adhésifs et produits chimiques d'étanchéité
Catalyseur
Agent de nettoyage
Retardateurs de flamme
Carburant
Combustibles
Carburants et additifs pour carburant
Fluides fonctionnels (systèmes fermés)
Intermédiaire
Intermédiaires
Produits chimiques de laboratoire
Monomères
Plastifiants
Auxiliaires technologiques, spécifiques à la production pétrolière
Solvant
Solvants (qui font partie de la formulation ou du mélange du produit)
Utilisations grand public du benzène :
Catalyseur
Agent de gravure
Carburant
Combustibles
Carburants et additifs pour carburant
Intermédiaire
Intermédiaires
Produits chimiques de laboratoire
Additifs de peinture et additifs de revêtement non décrits par d'autres catégories
Plastifiant
Auxiliaires technologiques, spécifiques à la production pétrolière
Solvant
Applications du benzène :
Premières candidatures :
Au 19e et au début du 20e siècle, le benzène était utilisé comme lotion après-rasage en raison de l'odeur agréable du benzène.
Avant les années 1920, le benzène était fréquemment utilisé comme solvant industriel, notamment pour le dégraissage des métaux.
Lorsque la toxicité du benzène est devenue évidente, le benzène a été supplanté par d'autres solvants, en particulier le toluène (méthylbenzène), qui a des propriétés physiques similaires mais n'est pas aussi cancérigène.
En 1903, Ludwig Roselius a popularisé l'utilisation du benzène pour décaféiner le café.
Cette découverte a conduit à la production de Sanka.
Ce processus a ensuite été interrompu.
Le benzène était historiquement utilisé comme composant important dans de nombreux produits de consommation tels que les clés à liquide, plusieurs décapants pour peinture, les colles à caoutchouc, les détachants et d'autres produits.
La fabrication de certaines de ces formulations contenant du benzène a cessé vers 1950, bien que Liquid Wrench ait continué à contenir des quantités importantes de benzène jusqu'à la fin des années 1970.
Avantages du benzène :
En tant que produit chimique de base, le benzène réagit avec d'autres produits chimiques pour produire une variété d'autres produits chimiques, matériaux et, finalement, des biens de consommation.
Le benzène est utilisé pour fabriquer d'autres produits chimiques comme l'éthylbenzène, le cumène et le cyclohexane, qui sont ensuite mis à réagir et utilisés dans la fabrication d'une variété de matériaux et de plastiques tels que le polystyrène, l'ABS et le nylon.
Il peut y avoir de nombreuses étapes dans le processus qui commence par la molécule de benzène et se termine par un matériau fini ou un produit de consommation.
Par exemple, le benzène est un bloc de construction utilisé pour fabriquer de l'éthylbenzène, qui est ensuite utilisé pour fabriquer du styrène, qui est utilisé pour fabriquer du polystyrène.
Le matériau final, le polystyrène, est un matériau chimiquement complètement différent du benzène.
Pour les produits de consommation où le benzène est utilisé comme bloc de construction ou intermédiaire, le benzène réagit généralement entièrement dans un système fermé, avec peu ou pas de benzène restant dans le produit de consommation fini.
Le benzène est également utilisé pour fabriquer certains types de lubrifiants, de caoutchoucs, de colorants, de détergents, de médicaments, d'explosifs et de pesticides.
Le benzène est naturellement présent dans le pétrole brut.
Le pétrole brut est raffiné en essence en utilisant la chaleur, la pression et des produits chimiques dans la raffinerie pour séparer le spectre des produits pétroliers du pétrole brut.
Le processus de raffinage produit de l'essence et un certain nombre d'autres produits pétroliers, notamment du diesel et du carburéacteur, des solvants, des huiles lubrifiantes, dont beaucoup contiennent de petites quantités de benzène.
Caractéristiques du Benzène :
Les modèles de liaison modernes (théories des liaisons de valence et des orbitales moléculaires) expliquent la structure et la stabilité du benzène en termes de délocalisation de six électrons du benzène, où la délocalisation dans ce cas fait référence à l'attraction d'un électron par les six carbones du cycle au lieu de juste un ou deux d'entre eux. Cette délocalisation entraîne une rétention plus forte des électrons, rendant le benzène plus stable et moins réactif que prévu pour un hydrocarbure insaturé.
En conséquence, l'hydrogénation du benzène se produit un peu plus lentement que l'hydrogénation des alcènes (autres composés organiques contenant des doubles liaisons carbone-carbone), et le benzène est beaucoup plus difficile à oxyder que les alcènes.
La plupart des réactions du benzène appartiennent à une classe appelée substitution aromatique électrophile qui laisse le cycle lui-même intact mais remplace l'un des hydrogènes attachés.
Ces réactions sont polyvalentes et largement utilisées pour préparer des dérivés du benzène.
Des études expérimentales, en particulier celles utilisant la diffraction des rayons X, montrent que le benzène a une structure plane avec chaque distance de liaison carbone-carbone égale à 1,40 angströms (Ã…).
Cette valeur est exactement à mi-chemin entre la distance C=C (1,34 Ã…) et la distance C-C (1,46 Ã…) d'une unité C=C-C=C, suggérant un type de liaison à mi-chemin entre une double liaison et une liaison simple (tous les angles de liaison sont de 120°).
Le benzène a un point d'ébullition de 80,1 °C (176,2 °F) et un point de fusion de 5,5 °C (41,9 °F), et le benzène est librement soluble dans les solvants organiques, mais seulement légèrement soluble dans l'eau.
Présence de Benzène :
Des traces de benzène se trouvent dans le pétrole et le charbon.
Le benzène est un sous-produit de la combustion incomplète de nombreux matériaux.
Pour un usage commercial, jusqu'à la Seconde Guerre mondiale, une grande partie du benzène était obtenue comme sous-produit de la production de coke (ou «huile légère de four à coke») pour l'industrie sidérurgique.
Cependant, dans les années 1950, la demande accrue de benzène, en particulier de la part de l'industrie croissante des polymères, a nécessité la production de benzène à partir du pétrole.
Aujourd'hui, la majeure partie du benzène provient de l'industrie pétrochimique, seule une petite fraction étant produite à partir du charbon.
Des molécules de benzène ont été détectées sur Mars.
Réactions du Benzène :
Les réactions les plus courantes du benzène impliquent la substitution d'un proton par d'autres groupes.
La substitution électrophile aromatique est une méthode générale de dérivation du benzène.
Le benzène est suffisamment nucléophile pour que le benzène subisse une substitution par des ions acylium et des carbocations alkyle pour donner des dérivés substitués.
L'exemple le plus répandu de cette réaction est l'éthylation du benzène.
Environ 24 700 000 tonnes ont été produites en 1999.
L'alkylation de Friedel-Crafts du benzène (et de nombreux autres cycles aromatiques) à l'aide d'un halogénure d'alkyle en présence d'un catalyseur acide de Lewis fort est très instructive mais d'une importance beaucoup moins industrielle.
De même, l'acylation de Friedel-Crafts est un exemple connexe de substitution aromatique électrophile.
La réaction implique l'acylation du benzène (ou de nombreux autres cycles aromatiques) avec un chlorure d'acyle à l'aide d'un catalyseur acide de Lewis fort tel que le chlorure d'aluminium ou le chlorure de fer (III).
Sulfonation, chloration, nitration :
En utilisant la substitution aromatique électrophile, de nombreux groupes fonctionnels sont introduits sur la charpente benzénique.
La sulfonation du benzène implique l'utilisation d'oléum, un mélange d'acide sulfurique et de trioxyde de soufre.
Les dérivés sulfonés du benzène sont des détergents utiles.
Lors de la nitration, le benzène réagit avec les ions nitronium (NO2+), qui est un électrophile puissant produit en combinant les acides sulfurique et nitrique.
Le nitrobenzène est le précurseur de l'aniline.
La chloration est réalisée avec du chlore pour donner du chlorobenzène en présence d'un catalyseur acide de Lewis tel que le trichlorure d'aluminium.
Hydrogénation :
Par hydrogénation, le benzène et les dérivés du benzène se transforment en cyclohexane et ses dérivés.
Cette réaction est réalisée par l'utilisation de hautes pressions d'hydrogène en présence de catalyseurs hétérogènes, tels que le nickel finement divisé.
Alors que les alcènes peuvent être hydrogénés près de la température ambiante, le benzène et les composés apparentés sont des substrats plus réticents, nécessitant des températures > 100 °C.
Cette réaction est pratiquée à grande échelle industriellement. En l'absence de catalyseur, le benzène est imperméable à l'hydrogène.
L'hydrogénation ne peut pas être arrêtée pour donner du cyclohexène ou des cyclohexadiènes car ce sont des substrats supérieurs.
La réduction du bouleau, un processus non catalytique, hydrogène cependant sélectivement le benzène en diène.
Complexes métalliques :
Le benzène est un excellent ligand dans la chimie organométallique des métaux de faible valence.
Des exemples importants incluent les complexes sandwich et demi-sandwich, respectivement, Cr(C6H6)2 et [RuCl2(C6H6)]2.
Résonance du Benzène :
Les doubles liaisons oscillantes dans le cycle benzénique sont expliquées à l'aide de structures de résonance selon la théorie des liaisons de valence.
Tous les atomes de carbone du cycle benzénique sont hybrides sp2.
L'une des deux orbitales hybrides sp2 d'un atome chevauche l'orbitale sp2 de l'atome de carbone adjacent formant six liaisons sigma CC.
D'autres orbitales hybrides sp2 gauches se combinent avec l'orbitale s de l'hydrogène pour former six liaisons CH sigma. Les orbitales p non hybridées restantes d'atomes de carbone forment des liaisons Ï€ avec des atomes de carbone adjacents par chevauchement latéral.
Ceci explique une possibilité égale pour la formation des liaisons C1 – C2, C3 – C4, C5 – C6 Ï€ ou C2 – C3, C4 – C5, C6-C1 Ï€.
La structure hybride est représentée en insérant un cercle dans l'anneau comme indiqué ci-dessous sur la figure.
Par conséquent, le benzène explique la formation de deux structures de résonance proposées par Kekule.
Aromaticité du Benzène :
Le benzène est un composé aromatique, car les liaisons CC formées dans le cycle ne sont pas exactement simples ou doubles, mais plutôt de longueur intermédiaire.
Les composés aromatiques sont divisés en deux catégories : les benzénoïdes (l'un contenant un cycle benzénique) et les non-benzénoïdes (ceux ne contenant pas de cycle benzénique), à condition qu'ils suivent la règle de Huckel.
Selon la règle de Huckel, pour qu'un cycle soit aromatique, le benzène doit avoir la propriété suivante :
Planéité
Délocalisation complète des électrons Ï€ dans l'anneau
Présence de (4n + 2) Ï€ électrons dans l'anneau où n est un entier (n = 0, 1, 2, . . .)
Structure du Benzène :
La diffraction des rayons X montre que les six liaisons carbone-carbone du benzène ont la même longueur, à 140 picomètres (pm).
Les longueurs des liaisons C-C sont supérieures à une double liaison (135 pm) mais plus courtes qu'une simple liaison (147 pm).
Cette distance intermédiaire est causée par la délocalisation des électrons : les électrons pour la liaison C=C sont répartis équitablement entre chacun des six atomes de carbone.
Le benzène a 6 atomes d'hydrogène, moins que l'alcane parent correspondant, l'hexane, qui en a 14.
Le benzène et le cyclohexane ont une structure similaire, seul le cycle d'électrons délocalisés et la perte d'un hydrogène par carbone distinguent le benzène du cyclohexane.
La molécule est plane.
La description des orbitales moléculaires implique la formation de trois orbitales Ï€ délocalisées couvrant les six atomes de carbone, tandis que la description des liaisons de valence implique une superposition de structures de résonance.
Le benzène est susceptible que cette stabilité contribue aux propriétés moléculaires et chimiques particulières connues sous le nom d'aromaticité.
Pour refléter avec précision la nature de la liaison, le benzène est souvent représenté par un cercle à l'intérieur d'un arrangement hexagonal d'atomes de carbone.
Les dérivés du benzène apparaissent suffisamment souvent en tant que composant de molécules organiques, à tel point que le consortium Unicode a attribué un symbole dans le bloc technique divers avec le code U+232C (⌬) pour représenter le benzène avec trois doubles liaisons, et U+ 23E3 (â £) pour une version délocalisée.
Dérivés du benzène :
De nombreux composés chimiques importants sont dérivés du benzène en remplaçant un ou plusieurs atomes d'hydrogène du benzène par un autre groupe fonctionnel.
Des exemples de dérivés simples du benzène sont le phénol, le toluène et l'aniline, respectivement abrégés PhOH, PhMe et PhNH2.
La liaison des cycles benzéniques donne le biphényle, C6H5–C6H5.
Une perte supplémentaire d'hydrogène donne des hydrocarbures aromatiques "fusionnés", tels que le naphtalène, l'anthracène, le phénanthrène et le pyrène.
La limite du processus de fusion est l'allotrope sans hydrogène du carbone, le graphite.
Dans les hétérocycles, les atomes de carbone du cycle benzénique sont remplacés par d'autres éléments.
Les variations les plus importantes contiennent de l'azote.
Le remplacement d'un CH par N donne le composé pyridine, C5H5N.
Bien que le benzène et la pyridine soient structurellement apparentés, le benzène ne peut pas être converti en pyridine.
Le remplacement d'une deuxième liaison CH par N donne, selon l'emplacement du deuxième N, la pyridazine, la pyrimidine ou la pyrazine.
Informations sur le métabolite humain du benzène :
Emplacements des tissus :
Moelle
Épiderme
Leucocyte
Foie
Histoire du Benzène :
Découverte:
Le mot « benzène » dérive de « gomme benjoin » (résine de benjoin), une résine aromatique connue depuis l'Antiquité en Asie du Sud-Est ; et plus tard aux pharmaciens et parfumeurs européens au XVIe siècle via les routes commerciales.
Une matière acide était dérivée du benjoin par sublimation et nommée "fleurs de benjoin", ou acide benzoïque.
L'hydrocarbure dérivé de l'acide benzoïque a ainsi acquis le nom de benzine, benzol ou benzène.
Michael Faraday a isolé et identifié pour la première fois le benzène en 1825 à partir du résidu huileux dérivé de la production de gaz d'éclairage, donnant au benzène le nom de bicarbure d'hydrogène.
En 1833, Eilhard Mitscherlich a produit du benzène en distillant de l'acide benzoïque (à partir de gomme de benjoin) et de la chaux.
Il a donné au composé le nom de benzine.
En 1836, le chimiste français Auguste Laurent nomma le benzène "phène".
Ce mot est devenu la racine du mot anglais "phenol", qui est le benzène hydroxylé, et "phenyl", le radical formé par abstraction d'un atome d'hydrogène (radical libre H•) du benzène.
En 1845, Charles Blachford Mansfield, travaillant sous August Wilhelm von Hofmann, a isolé le benzène du goudron de houille.
Quatre ans plus tard, Mansfield a commencé la première production de benzène à l'échelle industrielle, basée sur la méthode du goudron de houille.
Peu à peu, le sentiment s'est développé parmi les chimistes qu'un certain nombre de substances étaient chimiquement liées au benzène, comprenant une famille chimique diversifiée.
En 1855, Hofmann a utilisé le mot "aromatique" pour désigner cette relation familiale, d'après une propriété caractéristique de nombreux membres du benzène.
En 1997, du benzène a été détecté dans l'espace lointain.
Formule annulaire du benzène :
La formule empirique du benzène était connue depuis longtemps, mais la structure hautement polyinsaturée du benzène, avec un seul atome d'hydrogène pour chaque atome de carbone, était difficile à déterminer.
Archibald Scott Couper en 1858 et Johann Josef Loschmidt en 1861 ont suggéré des structures possibles contenant plusieurs doubles liaisons ou plusieurs anneaux, mais trop peu de preuves étaient alors disponibles pour aider les chimistes à décider d'une structure particulière.
En 1865, le chimiste allemand Friedrich August Kekulé publia un article en français (car il enseignait alors en Belgique francophone) suggérant que la structure contenait un anneau de six atomes de carbone avec des liaisons simples et doubles alternées.
L'année suivante, il publia un article beaucoup plus long en allemand sur le même sujet.
Kekulé a utilisé des preuves qui s'étaient accumulées au cours des années intermédiaires - à savoir qu'il semblait toujours y avoir un seul isomère de tout monodérivé du benzène, et qu'il semblait toujours y avoir exactement trois isomères de chaque dérivé disubstitué - maintenant compris comme correspondant aux modèles ortho, méta et para de substitution d'arènes - pour argumenter à l'appui de sa structure proposée.
L'anneau symétrique de Kekulé pourrait expliquer ces faits curieux, ainsi que le rapport carbone-hydrogène de 1:1 du benzène.
La nouvelle compréhension du benzène, et donc de tous les composés aromatiques, s'est avérée si importante pour la chimie pure et appliquée qu'en 1890, la Société chimique allemande a organisé une appréciation élaborée en l'honneur de Kekulé, célébrant le vingt-cinquième anniversaire de sa premier papier au benzène.
Ici Kekulé a parlé de la création de la théorie.
Il a dit qu'il avait découvert la forme annulaire de la molécule de benzène après avoir eu une rêverie ou un rêve éveillé d'un serpent se mordant la queue de Benzène (c'est un symbole commun dans de nombreuses cultures anciennes connues sous le nom d'Ouroboros ou nœud sans fin).
Cette vision, dit-il, lui est venue après des années d'étude de la nature des liaisons carbone-carbone.
C'était sept ans après avoir résolu le problème de la façon dont les atomes de carbone pouvaient se lier à jusqu'à quatre autres atomes en même temps.
Curieusement, une représentation humoristique similaire du benzène était apparue en 1886 dans une brochure intitulée Berichte der Durstigen Chemischen Gesellschaft (Journal of the Thirsty Chemical Society), une parodie du Berichte der Deutschen Chemischen Gesellschaft, seule la parodie avait des singes se saisissant dans un cercle, plutôt que des serpents comme dans l'anecdote de Kekulé.
Certains historiens ont suggéré que la parodie était un pamphlet de l'anecdote du serpent, peut-être déjà bien connue par transmission orale même si Benzène n'était pas encore paru sous forme imprimée.
Le discours de Kekulé de 1890 dans lequel cette anecdote apparaît a été traduit en anglais.
Si l'anecdote est le souvenir d'un événement réel, les circonstances évoquées dans le récit suggèrent que Benzène a dû se produire au début de 1862.
En 1929, la nature cyclique du benzène a finalement été confirmée par la cristallographe Kathleen Lonsdale en utilisant des méthodes de diffraction des rayons X.
En utilisant de gros cristaux d'hexaméthylbenzène, un dérivé du benzène avec le même noyau de six atomes de carbone, Lonsdale a obtenu des diagrammes de diffraction.
En calculant plus de trente paramètres, Lonsdale a démontré que le cycle benzénique ne pouvait être qu'un hexagone plat et a fourni des distances précises pour toutes les liaisons carbone-carbone de la molécule.
Nomenclature:
Le chimiste allemand Wilhelm Körner a suggéré les préfixes ortho-, méta-, para- pour distinguer les dérivés disubstitués du benzène en 1867.
Cependant, il n'a pas utilisé les préfixes pour distinguer les positions relatives des substituants sur un cycle benzénique.
Le benzène était le chimiste allemand Carl Gräbe qui, en 1869, a utilisé pour la première fois les préfixes ortho-, méta-, para- pour désigner des emplacements relatifs spécifiques des substituants sur un cycle aromatique disubstitué (à savoir, naphtalène).
En 1870, le chimiste allemand Viktor Meyer a appliqué pour la première fois la nomenclature de Gräbe au benzène.
Production de Benzène :
Quatre procédés chimiques contribuent à la production industrielle de benzène : le reformage catalytique, l'hydrodésalkylation du toluène, la dismutation du toluène, le vapocraquage, etc.
Selon le profil toxicologique ATSDR pour le benzène, entre 1978 et 1981, les reformats catalytiques représentaient environ 44 à 50 % de la production totale de benzène aux États-Unis.
Reformage catalytique :
Dans le reformage catalytique, un mélange d'hydrocarbures avec des points d'ébullition entre 60 et 200 ° C est mélangé avec de l'hydrogène gazeux, puis exposé à un catalyseur bifonctionnel de chlorure de platine ou de chlorure de rhénium à 500 à 525 ° C et à des pressions allant de 8 à 50 atm.
Dans ces conditions, les hydrocarbures aliphatiques forment des anneaux et perdent de l'hydrogène pour devenir des hydrocarbures aromatiques.
Les produits aromatiques de la réaction sont ensuite séparés du mélange réactionnel (ou reformat) par extraction avec l'un quelconque d'un certain nombre de solvants, y compris le diéthylène glycol ou le sulfolane, et le benzène est ensuite séparé des autres aromatiques par distillation.
L'étape d'extraction des aromatiques du reformat est conçue pour produire des aromatiques avec les composants non aromatiques les plus faibles.
La récupération des aromatiques, communément appelés BTX (isomères du benzène, du toluène et du xylène), implique de telles étapes d'extraction et de distillation.
De manière similaire à ce reformage catalytique, UOP et BP ont commercialisé une méthode du GPL (principalement du propane et du butane) aux aromatiques.
Hydrodésalkylation du toluène :
L'hydrodésalkylation du toluène convertit le toluène en benzène.
Dans ce procédé à forte intensité d'hydrogène, le toluène est mélangé à de l'hydrogène, puis passé sur un catalyseur au chrome, au molybdène ou à l'oxyde de platine à 500–650 °C et à une pression de 20–60 atm.
Parfois, des températures plus élevées sont utilisées à la place d'un catalyseur (dans des conditions de réaction similaires).
Dans ces conditions, le toluène subit une désalkylation en benzène et méthane :
C6H5CH3+H2⟶C6H6+CH4
Cette réaction irréversible s'accompagne d'une réaction secondaire à l'équilibre qui produit du biphényle (alias diphényle) à plus haute température :
2 C6H6 → H2 + C6H5–C6H5
Si le flux de matières premières contient beaucoup de composants non aromatiques (paraffines ou naphtènes), ceux-ci sont probablement décomposés en hydrocarbures inférieurs tels que le méthane, ce qui augmente la consommation d'hydrogène.
Un rendement de réaction typique dépasse 95 %. Parfois, des xylènes et des aromatiques plus lourds sont utilisés à la place du toluène, avec une efficacité similaire.
Ceci est souvent appelé méthodologie "sur mesure" pour produire du benzène, par rapport aux procédés d'extraction conventionnels BTX (benzène-toluène-xylène).
Dismutation du toluène :
La dismutation du toluène (TDP) est la conversion du toluène en benzène et xylène.
Étant donné que la demande de para-xylène (p-xylène) dépasse considérablement la demande d'autres isomères de xylène, un raffinement du procédé TDP appelé TDP sélectif (STDP) peut être utilisé.
Dans ce procédé, le flux de xylène sortant de l'unité TDP est composé d'environ 90 % de p-xylène.
Dans certains systèmes, même le rapport benzène/xylènes est modifié pour favoriser les xylènes.
Craquage à la vapeur :
Le vapocraquage est le processus de production d'éthylène et d'autres alcènes à partir d'hydrocarbures aliphatiques.
Selon la matière première utilisée pour produire les oléfines, le vapocraquage peut produire un sous-produit liquide riche en benzène appelé essence de pyrolyse.
L'essence de pyrolyse peut être mélangée à d'autres hydrocarbures comme additif à l'essence, ou acheminée vers un processus d'extraction pour récupérer les aromatiques BTX (benzène, toluène et xylènes).
Autres méthodes:
Bien qu'elles n'aient aucune importance commerciale, de nombreuses autres voies d'accès au benzène existent.
Le phénol et les halobenzènes peuvent être réduits avec des métaux.
L'acide benzoïque et les sels de benzène subissent une décarboxylation en benzène.
La réaction du composé diazonium dérivé de l'aniline avec l'acide hypophosphoreux donne du benzène.
La trimérisation alcyne de l'acétylène donne du benzène.
La décarboxylation complète de l'acide mellitique donne du benzène.
Informations générales sur la fabrication du benzène :
Secteurs de transformation de l'industrie :
Fabrication d'adhésifs
Fabrication de tous les autres produits chimiques organiques de base
Fabrication de tous les autres produits et préparations chimiques
Fabrication de tous les autres produits du pétrole et du charbon
Fabrication de produits informatiques et électroniques
Construction
Fabrication cyclique de pétrole brut et intermédiaires
Non connu ou raisonnablement vérifiable
Activités de forage, d'extraction et de soutien pétroliers et gaziers
Autre (nécessite des informations supplémentaires)
Fabrication pétrochimique
Raffineries de pétrole
Fabrication de matières plastiques et de résines
Fabrication de produits en plastique
Fabrication de produits en caoutchouc
Fabrication de savons, de produits de nettoyage et de produits de toilette
Fabrication de matériel de transport
Commerce de gros et de détail
Effets sur la santé du benzène :
Le benzène est classé comme cancérogène, ce qui augmente le risque de cancer et d'autres maladies, et est également une cause notoire d'insuffisance médullaire.
Des quantités importantes de données épidémiologiques, cliniques et de laboratoire établissent un lien entre le benzène et l'anémie aplasique, la leucémie aiguë, les anomalies de la moelle osseuse et les maladies cardiovasculaires.
Les hémopathies malignes spécifiques auxquelles le benzène est associé comprennent : la leucémie myéloïde aiguë (LMA), l'anémie aplasique, le syndrome myélodysplasique (SMD), la leucémie lymphoblastique aiguë (LAL) et la leucémie myéloïde chronique (LMC).
L'American Petroleum Institute (API) a déclaré en 1948 que "le benzène est généralement considéré comme la seule concentration absolument sûre pour le benzène est zéro".
Il n'y a pas de niveau d'exposition sûr; même de petites quantités peuvent causer des dommages.
Le département américain de la santé et des services sociaux (DHHS) classe le benzène comme cancérogène pour l'homme.
L'exposition à long terme à des niveaux excessifs de benzène dans l'air provoque la leucémie, un cancer potentiellement mortel des organes hématopoïétiques.
En particulier, la leucémie myéloïde aiguë ou la leucémie aiguë non lymphocytaire (AML & ANLL) est causée par le benzène.
Le CIRC a classé le benzène comme "connu pour être cancérigène pour l'homme".
Comme le benzène est omniprésent dans l'essence et les hydrocarbures qui sont utilisés partout, l'exposition humaine au benzène est un problème de santé mondial.
Le benzène cible le foie, les reins, les poumons, le cœur et le cerveau et peut provoquer des ruptures de brins d'ADN et des lésions chromosomiques.
Le benzène provoque le cancer chez les animaux, y compris les humains.
Il a été démontré que le benzène provoque le cancer chez les deux sexes de plusieurs espèces d'animaux de laboratoire exposés par diverses voies.
Manipulation et stockage du benzène :
Intervention en cas de déversement sans incendie :
ÉLIMINER toutes les sources d'ignition (interdiction de fumer, fusées éclairantes, étincelles ou flammes) de la zone immédiate.
Tous les équipements utilisés lors de la manipulation du produit doivent être mis à la terre.
Ne pas toucher ou marcher sur le produit déversé.
Arrêtez la fuite si vous pouvez faire du Benzène sans risque.
Empêcher l'entrée dans les cours d'eau, les égouts, les sous-sols ou les zones confinées.
Une mousse anti-vapeur peut être utilisée pour réduire les vapeurs.
Absorber ou recouvrir de terre sèche, de sable ou d'un autre matériau non combustible et transférer dans des conteneurs.
Utilisez des outils propres et anti-étincelles pour recueillir le matériau absorbé.
GRAND DÉVERSEMENT :
Endiguer loin devant le déversement liquide pour une élimination ultérieure.
L'eau pulvérisée peut réduire les vapeurs, mais n'empêche pas l'inflammation dans les espaces clos.
Conditions de stockage du benzène :
Conserver dans des récipients bien fermés dans un endroit frais et à l'abri du feu.
Le site de stockage doit être aussi proche que possible du laboratoire dans lequel les agents cancérigènes doivent être utilisés, de sorte que seules de petites quantités nécessaires à l'expt doivent être transportées.
Les substances cancérigènes doivent être conservées dans une seule section du placard, un réfrigérateur ou un congélateur antidéflagrant (selon les propriétés chimicophysiques) portant une étiquette appropriée.
Un inventaire doit être conservé, indiquant la quantité de cancérigène et la date d'acquisition du benzène.
Les installations de distribution doivent être contiguës à la zone de stockage.
Conditions d'un stockage sûr, y compris d'éventuelles incompatibilités:
Conserver le récipient bien fermé dans un endroit sec et bien ventilé.
Les contenants ouverts doivent être soigneusement refermés et maintenus debout pour éviter les fuites.
Mesures de premiers soins du benzène :
YEUX:
Vérifiez d'abord si la victime a des lentilles de contact et retirez-les si elles sont présentes.
Rincer les yeux de la victime avec de l'eau ou une solution saline normale pendant 20 à 30 minutes tout en appelant simultanément un hôpital ou un centre antipoison.
Ne mettez pas de pommades, d'huiles ou de médicaments dans les yeux de la victime sans instructions spécifiques d'un médecin.
Transportez IMMÉDIATEMENT la victime après avoir rincé les yeux à l'hôpital même si aucun symptôme (comme une rougeur ou une irritation) ne se développe.
PEAU:
Rincer IMMÉDIATEMENT la peau affectée avec de l'eau tout en enlevant et en isolant tous les vêtements contaminés.
Lavez soigneusement toutes les zones de peau affectées avec du savon et de l'eau.
Appeler IMMÉDIATEMENT un hôpital ou un centre antipoison même si aucun symptôme (comme une rougeur ou une irritation) ne se développe.
Transporter IMMÉDIATEMENT la victime à l'hôpital pour y être soignée après avoir lavé les zones touchées.
INHALATION:
Quitter IMMÉDIATEMENT la zone contaminée.
Prenez de grandes bouffées d'air frais.
Appelez IMMÉDIATEMENT un médecin et soyez prêt à transporter la victime à l'hôpital même si aucun symptôme (comme une respiration sifflante, une toux, un essoufflement ou une sensation de brûlure dans la bouche, la gorge ou la poitrine) ne se développe.
Fournir une protection respiratoire appropriée aux sauveteurs entrant dans une atmosphère inconnue.
Dans la mesure du possible, un appareil respiratoire autonome (ARA) doit être utilisé.
S'il n'est pas disponible, utilisez un niveau de protection supérieur ou égal à celui conseillé sous Vêtements de protection.
INGESTION:
NE PAS FAIRE VOMIR.
Les produits chimiques volatils ont un risque élevé d'être aspirés dans les poumons de la victime lors de vomissements, ce qui augmente les problèmes médicaux.
Si la victime est consciente et ne convulse pas, lui faire boire 1 ou 2 verres d'eau pour diluer le produit chimique et appeler IMMÉDIATEMENT un hôpital ou un centre antipoison.
Transporter IMMÉDIATEMENT la victime à l'hôpital.
Si la victime convulse ou est inconsciente, ne rien faire avaler, s'assurer que les voies respiratoires de la victime sont dégagées et allonger la victime sur le côté, la tête plus basse que le corps.
NE PAS FAIRE VOMIR.
Transporter IMMÉDIATEMENT la victime à l'hôpital.
AUTRE:
Étant donné que ce produit chimique est un cancérogène connu ou suspecté, vous devez contacter un médecin pour obtenir des conseils concernant les effets possibles à long terme sur la santé et une recommandation potentielle pour une surveillance médicale.
Les recommandations du médecin dépendront du composé spécifique, du benzène, des propriétés physiques et de toxicité, du niveau d'exposition, de la durée d'exposition et de la voie d'exposition.
Lutte contre l'incendie du benzène :
AVERTIR:
La majorité de ces produits ont un point éclair très bas.
L'utilisation d'eau pulvérisée lors de la lutte contre l'incendie peut être inefficace.
PETIT FEU:
Poudre chimique sèche, CO2, eau pulvérisée ou mousse ordinaire.
GRAND INCENDIE :
Eau pulvérisée, brouillard ou mousse régulière. Évitez de diriger des jets droits ou pleins directement sur le produit.
Si le benzène peut être fait en toute sécurité, éloignez les contenants non endommagés de la zone autour du feu.
INCENDIE IMPLIQUANT DES RÉSERVOIRS OU DES CHARGES DE VOITURE/REMORQUE :
Combattez le feu à une distance maximale ou utilisez des dispositifs de flux maître sans pilote ou des buses de surveillance.
Refroidir les conteneurs avec de grandes quantités d'eau jusqu'à ce que le feu soit éteint.
Retirer immédiatement en cas de bruit montant provenant des dispositifs de sécurité de ventilation ou de décoloration du réservoir.
Restez TOUJOURS à l'écart des réservoirs engloutis par le feu.
Pour un incendie massif, utilisez des dispositifs de flux maître sans pilote ou des buses de surveillance.
Si cela est impossible, retirez-vous de la zone et laissez le feu brûler.
Procédures de lutte contre l'incendie du benzène :
Approchez-vous du feu par le vent pour éviter les vapeurs dangereuses.
Utiliser de l'eau pulvérisée, de la poudre chimique sèche, de la mousse ou du dioxyde de carbone.
Utiliser de l'eau pulvérisée pour refroidir les contenants exposés au feu.
Si matière en feu ou impliquée dans un incendie :
Ne pas éteindre le feu à moins que l'écoulement ne puisse être arrêté.
Utiliser de l'eau en quantité suffisante sous forme de brouillard.
Des jets d'eau solides peuvent propager un incendie.
Refroidir tous les contenants touchés avec de grandes quantités d'eau.
Appliquez de l'eau d'aussi loin que possible.
Utiliser de la mousse, de la poudre chimique sèche ou du dioxyde de carbone.
Moyens d'extinction appropriés :
Utiliser de l'eau pulvérisée, de la mousse résistant à l'alcool, de la poudre chimique sèche ou du dioxyde de carbone.
Conseils aux pompiers :
Porter un appareil respiratoire autonome pour lutter contre l'incendie si nécessaire.
Utiliser de l'eau pulvérisée pour refroidir les contenants non ouverts.
Mesures de rejet accidentel de benzène :
MESURE DE PRECAUTION IMMEDIATE :
Isoler la zone de déversement ou de fuite sur au moins 50 mètres (150 pieds) dans toutes les directions.
GRAND DÉVERSEMENT :
Envisagez une évacuation initiale sous le vent sur au moins 300 mètres (1000 pieds).
FEU:
Si une citerne, un wagon ou un camion-citerne est impliqué dans un incendie, ISOLER sur 800 mètres (1/2 mile) dans toutes les directions.
Envisagez également une évacuation initiale sur 800 mètres (1/2 mile) dans toutes les directions.
Élimination des déversements de benzène :
Retirez toutes les sources d'inflammation.
Evacuez la zone dangereuse ! Consultez un expert!
Protection personnelle:
vêtements de protection complets, y compris un appareil respiratoire autonome.
NE PAS laver dans les égouts.
NE PAS laisser ce produit chimique entrer dans l'environnement.
Recueillir les fuites et les liquides renversés dans des récipients hermétiques autant que possible.
Absorber le liquide restant avec du sable ou un absorbant inerte.
Ensuite, stockez et éliminez conformément aux réglementations locales.
Méthodes de nettoyage du benzène :
Pour les déversements sur l'eau, contenir avec des barrages ou des barrières, utiliser des agents agissant en surface pour épaissir les matériaux déversés.
Retirez les matériaux piégés avec des tuyaux d'aspiration.
De petits déversements de benzène peuvent être absorbés par sorption sur du carbone ou des résines absorbantes synthétiques.
Rincer la zone avec de l'eau.
Pour de grandes quantités, si la réponse est rapide, le benzène peut être écrémé à la surface.
La paille peut être utilisée pour nettoyer les nappes.
Un pare-particules à haute efficacité (HEPA) ou des filtres à charbon peuvent être utilisés pour minimiser la quantité de substances cancérigènes dans les armoires de sécurité ventilées par air évacué, les hottes de laboratoire, les boîtes à gants ou les animaleries.
Un boîtier de filtre conçu pour que les filtres usagés puissent être transférés dans un sac en plastique sans contaminer le personnel de maintenance est disponible dans le commerce.
Les filtres doivent être placés dans des sacs en plastique immédiatement après leur retrait.
Le sac en plastique doit être scellé immédiatement.
Le sac scellé doit être étiqueté correctement.
Les déchets liquides doivent être placés ou collectés dans des conteneurs appropriés pour leur élimination.
Le couvercle doit être sécurisé et les bouteilles correctement étiquetées.
Une fois remplies, les bouteilles doivent être placées dans un sac en plastique, afin que la surface extérieure ne soit pas contaminée.
Le sac en plastique doit également être scellé et étiqueté.
La verrerie brisée doit être décontaminée par extraction au solvant, par destruction chimique ou dans des incinérateurs spécialement conçus.
Identifiants du Benzène :
Numéro CAS : 71-43-2
ChEBI:CHEBI:16716
ChEMBL : ChEMBL277500
ChemSpider : 236
InfoCard ECHA : 100.000.685
Numéro CE : 200-753-7
KEGG : C01407
PubChem CID : 241
Numéro RTECS : CY1400000
UNII : J64922108F
Tableau de bord CompTox (EPA) : DTXSID3039242
InChIInChI=1S/C6H6/c1-2-4-6-5-3-1/h1-6H
Clé : UHOVQNZJYSORNB-UHFFFAOYSA-N
SOURIRES : c1ccccc1
Formule chimique : C6H6
Masse molaire : 77,81 grammes/mole
Point de fusion : 5,5 oC
Point d'ébullition : 80,1 oC
Propriétés du Benzène :
Formule chimique : C6H6
Masse molaire : 78,114 g·molâˆ'1
Aspect : Liquide incolore
Odeur : douce aromatique
Densité : 0,8765(20) g/cm3
Point de fusion : 5,53 °C (41,95 °F ; 278,68 K)
Point d'ébullition : 80,1 °C (176,2 °F ; 353,2 K)
Solubilité dans l'eau:
1,53 g/L (0 °C)
1,81 g/L (9 °C)
1,79 g/L (15 °C)
1,84 g/L (30 °C)
2,26 g/L (61 °C)
3,94 g/L (100 °C)
21,7 g/kg (200 °C, 6,5 MPa)
17,8 g/kg (200 °C, 40 MPa)
Solubilité : Soluble dans l'alcool, le CHCl3, le CCl4, l'éther diéthylique, l'acétone, l'acide acétique
Solubilité dans l'éthanediol :
5,83 g/100 g (20 °C)
6,61 g/100 g (40 °C)
7,61 g/100 g (60 °C)
Solubilité dans l'éthanol :
20 °C, solution dans l'éthanol : 1,2 mL/L (20 % v/v)
Solubilité dans l'acétone :
20 °C, solution dans l'acétone :
7,69 mL/L (38,46 % v/v)
49,4 mL/L (62,5 % v/v)
Solubilité dans le diéthylène glycol : 52 g/100 g (20 °C)
log P : 2,13
La pression de vapeur:
12,7 kPa (25 °C)
24,4 kPa (40 °C)
181 kPa (100 °C)[8]
Acide conjugué : Benzénium
Base conjuguée : Benzénide
UV-vis (λmax) : 255 nm
Susceptibilité magnétique (χ) : ≤ 54,8 · 10≤ 6 cm3/mol
Indice de réfraction (nD) :
1.5011 (20 °C)
1.4948 (30 °C)
Viscosité:
0,7528 cP (10 °C)
0,6076 cP (25 °C)
0,4965 cP (40 °C)
0,3075 cP (80 °C)
Poids moléculaire : 78,11
XLogP3 : 2.1
Nombre de donneurs d'obligations hydrogène : 0
Nombre d'accepteurs de liaison hydrogène : 0
Nombre d'obligations rotatives : 0
Masse exacte : 78.0469501914
Masse monoisotopique : 78,0469501914
Surface polaire topologique : 0 Ų
Nombre d'atomes lourds : 6
Complexité : 15,5
Nombre d'atomes isotopiques : 0
Nombre de stéréocentres atomiques définis : 0
Nombre de stéréocentres d'atomes non définis : 0
Nombre de stéréocentres de liaison définis : 0
Nombre de stéréocentres de liaison indéfinis : 0
Nombre d'unités liées par covalence : 1
Le composé est canonisé : Oui
Structure du Benzène :
Forme moléculaire : Trigone planaire
Moment dipolaire : 0 D
Thermochimie du Benzène :
Capacité calorifique (C) : 134,8 J/mol·K
Entropie molaire standard (S⦵298) : 173,26 J/mol·K[8]
Enthalpie standard de formation (ΔfH⦵298) : 48,7 kJ/mol
Enthalpie de combustion standard (ΔcH⦵298) : -3267,6 kJ/mol[8]
Composés apparentés de benzène :
Toluène
Borazine
Noms du Benzène :
Noms des processus réglementaires :
Benzène
BENZÈNE
Benzène (Cyclohexatriène)
Benzène
Noms traduits :
Benno (es)
Bensen (et)
Bentseeni (fi)
benzène (nl)
benzène (cs)
benzène (da)
benzène (h)
benzène (non)
benzène (pl)
benzène (ro)
benzène (sl)
benzène (sv)
benzènes (lt)
benzène (le)
benzène (pt)
Benzol (de)
benzol (hu)
benzols (vl)
benzène (fr)
benzén (sk)
βενζόλιο (el)
бензен (bg)
Nom CAS :
Benzène
Noms IUPAC :
BENZÈNE
Benzène
benzène
BENZÈNE
Benzène
benzène
Benzène / CE : 200-753-7
Benzène-1,3-diamine
Benzol
Benzol
Benzène de pétrole
Appellations commerciales:
Annülène
Benceno
Benzen ropný
Benzène
benzène
Benzène (8CI, 9CI)
Benzène - E
Benzène SP
Benzol
Benzole
Naphta de charbon
Cyclohexatriène
Pétrobenzène
Benzène de pétrole
Phène
Hydrure de phényle
Pur Benzène
Benzène pur
Pyrobenzol
Pyrobenzol
Réinbenzol
Autres noms:
Benzol (historique/allemand)
Phénane
Hydrure de phénylène
Cyclohexa-1,3,5-triène; 1,3,5-cyclohexatriène (isomères de résonance théoriques)
Annulène
Phène (historique)