Quick Search

PRODUCTS

BORIC ACID

SYNONMYS: boron oxide hydroxide; orthoboric acid; BORIC ACID;10043-35-3, 12258-53-6, 11113-50-1; 233-139-2, 233-139-2, 234-343-4; Borsaeure;  Borofax; Boron hydroxide; Boron trihydroxide; Three Elephant

Boric acid is a weak, monobasic Lewis acid of boron. Boric acid is often used as an antiseptic, insecticide, flame retardant, neutron absorber, or precursor to other chemical compounds.

CAS Number:10043-35-3, 12258-53-6, 11113-50-1
EC Number:233-139-2, 233-139-2, 234-343-4


SYNONMYS:

boron oxide hydroxide; orthoboric acid; BORIC ACID; boric acid; Orthoboric acid; Boracic acid; 10043-35-3; Borofax; Boron hydroxide; Boron trihydroxide; Three Elephant; Boric acid (H3BO3); Basilit B; Trihydroxyborone; Flea Prufe; Super Flea Eliminator; Orthoboric acid (B(OH)3); Orthoborsaeure; Boric acid (BH3O3); Borsaeure; Borsaure; Tetraborate; 11113-50-1; Trihydroxyborane; Acidum boricum; Dr.'s 1 Flea Terminator DT; Boric acid (VAN); Bluboro; Optibor; component of Aci-Jel; Dr.'s 1 Flea Terminator DFPBO; Orthboric Acid; Dr.'s 1 Flea Terminator DF; Borsaure [German]; Collyrium Eye Wash; Dr.'s 1 Flea Terminator DTPBO; NCI-C56417; Caswell No. 109; B(OH)3; trihydroxidoboron; Kjel-sorb; Ant flip; Homberg's salt; Kill-off; Boric acid [USAN:JAN]; UNII- R57ZHV85D4; hydrogen orthoborate; NSC 81726; Boric acid (TN); CCRIS 855; HSDB 1432; (10B)Orthoboric acid; BORIC ACID, ACS; EINECS 233-139-2; EPA PesticideChemical Code 011001; Orthoboric acid (H3BO3); Boric acid (H310BO3); Borate (B4O7(2-)); AI3-02406; R57ZHV85D4; CHEBI:33118; KGBXLFKZBHKPEV-UHFFFAOYSA-N [B(OH)3]; 1332-77-0 (di-potassium salt); NCGC00090745-02; DSSTox_CID_194; Kjel-Sorb™ Solution; DSSTox_RID_75425; DSSTox_GSID_20194; 12258-53-6; Boron,Reference Standard Solution; BO3; Boric acid, crude natural, containing not more than 85 per cent ofH3BO3 calculated on the dry weight; Niban Granular Bait;CAS-10043-35-3; Boric acid [JAN:NF]; Borate(2-), heptaoxotetra-; Boricacid; Sassolite; Orthoborc acd; ortho-boric acid; Boric acid flakes; EINECS 234-343-4; Boric acid (JP15/NF); Boric acid (JP17/NF); Acidum boricum (Salt/Mix); EC 233-139-2; H3BO3; KSC177G8D; BIDD:ER0252; Boracic acid, Orthoboricacid; CHEMBL42403; Boric acid, 99% 500g; AC1L1P71; Collyrium Eye Wash (Salt/Mix); DTXSID1020194;; BDBM39817; CTK0H7381; KGBXLFKZBHKPEV-UHFFFAOYSA-; KS-00000URW; MolPort-003-925-997; Boric acid, BioXtra, >=99.5%; NSC81726; EINECS 237-478-7; Tox21_111004; Tox21_202185; Tox21_301000; BC-140; LS321;MFCD00011337; NSC-81726; STL445672; 12007-58-8 (di-ammonium salt); AKOS015833571; ZINC245189278; Boric acid, ACS reagent, >=99.5%; DB11326; LS41322; RL00039;RTR-000169; TRA0007941; Boric acid, 99.97% trace metals basis; Boric acid, USP, 99.5-100.5%; NCGC00090745-01; NCGC00090745-03; NCGC00090745-04; NCGC00090745-05; NCGC00254902-01; NCGC00259734-01; BC001419; Boric acid, ReagentPlus(R), >=99.5%; BP-13473; LS-45173; SC-65217; SC-97816; Boric acid, 99.999% tracemetals basis; Boric acid, SAJ first grade, >=99.5%; borax; 12007-66-8 (strontium[1:1] salt); 12007-67-9 (zinc[1:1] salt); 12228-91-0 (manganese[1:1] salt);AB1002298; Boric acid, for electrophoresis, >=99.5%; Boric acid, JIS special grade, >=99.5%; TR-000169; B7305; Boric acid, Vetec(TM) reagent grade, 98%; FT-0623166; FT-0623167; InChI=1/BH3O3/c2-1(3)4/h2-4H; Boric acid, tablet, 1 g boric acid per tablet; C12486; D01089; 13460-50-9 (HBO2); A800201; J-000132; J-523836; I14-17611; I14-19610; 13813-79-1 (H3(10)BO3); Boric acid, >=99.5%, suitable for amino acid analysis; Boric acid, NIST(R) SRM(R) 951a, isotopicstandard; Boric acid, NIST(R) SRM(R) 973, acidimetric standard; Boric acid, BioUltra, for molecular biology, >=99.5% (T); Boric acid, United StatesPharmacopeia (USP) Reference Standard; Boric acid, cell culture tested, plant cell culture tested, >=99.5%; Boric acid, Biotechnology Performance Certified,>=99.5% (titration), Cell Culture Tested; Boric acid, p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 99.5-100.5%; Boron standard solution, 1 mg/mL B, suitablefor atomic absorption spectrometry, 1000 ppm B; 12795-04-9; 30698-98-7; Boric acid, BioReagent, for molecular biology, suitable for cell culture, suitablefor plant cell culture, >=99.5%; Boric acid, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., buffer substance, >=99.8%; Boric acid, puriss., meetsanalytical specification of Ph. Eur., BP, NF, 99.5-100.5%, powder; boric asit; borık asit; borık asid; borik asid; BORİK ASİT


BORIC ACID
Boric acid

Boric acid
Structural formula
Space-filling model
Boric acid crystals
Names
IUPAC names
Boric acid
Trihydrooxidoboron
Other names
Orthoboric acid,
Boracic acid,
Sassolite,
Optibor,
Borofax,
Trihydroxyborane,
Boron(III) hydroxide,
Boron Trihydroxide
Identifiers
CAS Number    
10043-35-3 check
3D model (JSmol)    
Interactive image
Interactive image
ChEBI    
CHEBI:33118 check
ChEMBL    
ChEMBL42403 check
ChemSpider    
7346 check
ECHA InfoCard    100.030.114 Edit this at Wikidata
EC Number    
233-139-2
E number    E284 (preservatives)
KEGG    
D01089 check
PubChem CID    
7628
UNII    
R57ZHV85D4 check
CompTox Dashboard (EPA)    
DTXSID1020194 Edit this at Wikidata
InChI[show]
SMILES[show]
Properties
Chemical formula    BH3O3
Molar mass    61.83 g·mol−1
Appearance    White crystalline solid
Density    1.435 g/cm3
Melting point    170.9 °C (339.6 °F; 444.0 K)
Boiling point    300 °C (572 °F; 573 K)
Solubility in water    2.52 g/100 mL (0 °C)
4.72 g/100 mL (20 °C)
5.7 g/100 mL (25 °C)
19.10 g/100 mL (80 °C)
27.53 g/100 mL (100 °C)
Solubility in other solvents    Soluble in lower alcohols
moderately soluble in pyridine
very slightly soluble in acetone
log P    -0.29[1]
Acidity (pKa)    9.24, 12.4, 13.3
Conjugate base    Borate
Magnetic susceptibility (χ)    -34.1·10−6 cm3/mol
Structure
Molecular shape    Trigonal planar
Dipole moment    Zero
Pharmacology
ATC code    S02AA03 (WHO) D08AD (WHO)
Hazards
Safety data sheet    See: data page
GHS pictograms    GHS08: Health hazard
NFPA 704 (fire diamond)    
NFPA 704 four-colored diamond
010
Flash point    Non-flammable
Lethal dose or concentration (LD, LC):
LD50 (median dose)    2660 mg/kg, oral (rat)
Related compounds
Related compounds    Boron trioxide
Borax
Supplementary data page
Structure and
properties    Refractive index (n),
Dielectric constant (εr), etc.
Thermodynamic
data    Phase behaviour
solid–liquid–gas
Spectral data    UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
check verify (what is check☒ ?)
Infobox references
Boric acid, also called hydrogen borate, boracic acid, and orthoboric acid is a weak, monobasic Lewis acid of boron. However, some of its behaviour towards some chemical reactions suggest it to be tribasic acid in the Brønsted sense as well. Boric acid is often used as an antiseptic, insecticide, flame retardant, neutron absorber, or precursor to other chemical compounds. It has the chemical formula H3BO3 (sometimes written B(OH)3), and exists in the form of colorless crystals or a white powder that dissolves in water. When occurring as a mineral, it is called sassolite.


Occurrence
Boric acid, or sassolite, is found mainly in its free state in some volcanic districts, for example, in the Italian region of Tuscany, the Lipari Islands and the US state of Nevada. In these volcanic settings it issues, mixed with steam, from fissures in the ground. It is also found as a constituent of many naturally occurring minerals – borax, boracite, ulexite (boronatrocalcite) and colemanite. Boric acid and its salts are found in seawater. It is also found in plants, including almost all fruits.[2]

Boric acid was first prepared by Wilhelm Homberg (1652–1715) from borax, by the action of mineral acids, and was given the name sal sedativum Hombergi ("sedative salt of Homberg"). However borates, including boric acid, have been used since the time of the ancient Greeks for cleaning, preserving food, and other activities.[3]

Preparation
Boric acid may be prepared by reacting borax (sodium tetraborate decahydrate) with a mineral acid, such as hydrochloric acid:

Na2B4O7·10H2O + 2 HCl → 4 B(OH)3 [or H3BO3] + 2 NaCl + 5 H2O
It is also formed as a by product of hydrolysis of boron trihalides and diborane:[4]

B2H6 + 6 H2O → 2 B(OH)3 + 6 H2
BX3 + 3 H2O → B(OH)3 + 3 HX (X = Cl, Br, I)
Properties
Boric acid is soluble in boiling water. When heated above 170 °C, it dehydrates, forming metaboric acid (HBO2):

H3BO3 → HBO2 + H
2O
Metaboric acid is a white, cubic crystalline solid and is only slightly soluble in water. Metaboric acid melts at about 236 °C, and when heated above about 300 °C further dehydrates, forming tetraboric acid, also called pyroboric acid (H2B4O7):

4 HBO2 → H2B4O7 + H
2O
The term boric acid may sometimes refer to any of these compounds. Further heating (to about 330 °C)[5] leads to boron trioxide.

H2B4O7 → 2 B2O3 + H
2O
There are conflicting interpretations for the origin of the acidity of aqueous boric acid solutions. Raman spectroscopy of strongly alkaline solutions has shown the presence of B(OH)−
4 ion,[6] leading some to conclude that the acidity is exclusively due to the abstraction of OH− from water:[6][7][8][9]

B(OH)3 + H
2O ⇌ B(OH)−
4 +  H+ (K = 7.3×10−10; pK = 9.14)
or more properly expressed in the aqueous solution:

B(OH)3 + 2 H
2O ⇌ B(OH)−
4 + H
3O+
This may be characterized[7][8][9] as Lewis acidity of boron toward OH−, rather than as Brønsted acidity.

Polyborate anions are formed at pH 7–10 if the boron concentration is higher than about 0.025 mol/L. The best known of these is the 'tetraborate' ion, found in the mineral borax:

4 [B(OH)4]− + 2  H+ ⇌ [B4O5(OH)4]2− + 7 H
2O
Boric acid makes an important contribution to the absorption of low frequency sound in seawater.[10]

Reactions
With polyols containing cis-vicinal diols, such as glycerol and mannitol, the acidity of the boric acid solution is increased. With different mannitol concentrations, the pK of B(OH)3 extends on five orders of magnitude (from 9 to 4): this exacerbed acidity of boric acid in the presence of mannitol is also sometimes referred as "mannitoboric acid".[11] Greenwood and Earnshawn (1997)[12] refer to a pK value of 5.15 while a pK value of 3.80 is also reported in Vogel's book.[13] This is due to the formation of a boron-mannitol chelate, [B(C6H8O2(OH)4)2]−, also known as mannitoborate complex, according to the following complexation reaction releasing a proton:

(mannitoboric acid)
boric acid
B(OH)3
 + 2 
mannitol
C6H14O6
 ⇌ 
mannitoborate complex
[B(C6H8O2(OH)4)2]−
 + 3 H2O + H+
(pKa ranging from 4 to 9, depending on the mannitol concentration)
This feature is used in analytical chemistry to determine the boron content in aqueous solution by potentiometric titration with a strong base, such as NaOH.[12]

Boric acid also dissolves in anhydrous sulfuric acid:[12]

B(OH)3 + 6 H2SO4 → B(HSO4)4− + 2 HSO4− + 3 H3O+
Boric acid reacts with alcohols to form borate esters, B(OR)3 where R is alkyl or aryl. A dehydrating agent, such as concentrated sulfuric acid is typically added:[14]

B(OH)3 + 3 ROH → B(OR)3 + 3 H2O
A variety of salts are also known, involving the planar trigonal BO33– borate anion.

Molecular and crystal structure
The three oxygen atoms form a trigonal planar geometry around the boron. The B-O bond length is 136 pm and the O-H is 97 pm. The molecular point group is C3h.

Crystalline boric acid consists of layers of B(OH)3 molecules held together by hydrogen bonds of length 272 pm. The distance between two adjacent layers is 318 pm.[12]

Boric-acid-unit-cell-3D-balls.png
Boric-acid-layer-3D-balls.png
The unit cell of boric acid
hydrogen bonding (dashed lines)
allows boric acid molecules to form
parallel layers in the solid state
Toxicology
Based on mammalian median lethal dose (LD50) rating of 2,660 mg/kg body mass, boric acid is only poisonous if taken internally or inhaled in large quantities. The Fourteenth Edition of the Merck Index indicates that the LD50 of boric acid is 5.14 g/kg for oral dosages given to rats, and that 5 to 20 g/kg has produced death in adult humans. For comparison's sake, the LD50 of salt is reported to be 3.75 g/kg in rats according to the Merck Index. According to the Agency for Toxic Substances and Disease Registry, "The minimal lethal dose of ingested boron (as boric acid) was reported to be 2–3 g in infants, 5–6 g in children, and 15–20 g in adults. [...] However, a review of 784 human poisonings with boric acid (10–88 g) reported no fatalities, with 88% of cases being asymptomatic."[15]

Long-term exposure to boric acid may be of more concern, causing kidney damage and eventually kidney failure (see links below). Although it does not appear to be carcinogenic, studies in dogs have reported testicular atrophy after exposure to 32 mg/kg bw/day for 90 days. This level is far lower than the LD50.[16]

According to the CLH report for boric acid published by the Bureau for Chemical Substances Lodz, Poland, boric acid in high doses shows significant developmental toxicity and teratogenicity in rabbit, rat, and mouse fetuses as well as cardiovascular defects, skeletal variations, and mild kidney lesions.[17] As a consequence in the 30th ATP to EU directive 67/548/EEC of August 2008, the European Commission decided to amend its classification as reprotoxic category 2, and to apply the risk phrases R60 (may impair fertility) and R61 (may cause harm to the unborn child).[18][19][20][21][22]

At a 2010 European Diagnostics Manufacturing Association (EDMA) Meeting, several new additions to the Substance of Very High Concern (SVHC) candidate list in relation to the Registration, Evaluation, Authorisation and Restriction of Chemicals Regulations 2007 (REACH) were discussed. Following the registration and review completed as part of REACH, the classification of Boric Acid CAS 10043-35-3 / 11113-50-1 is listed from 1 December 2010 is H360FD (May damage fertility. May damage the unborn child.)[23][24]

Uses
Industrial
The primary industrial use of boric acid is in the manufacture of monofilament fiberglass usually referred to as textile fiberglass. Textile fiberglass is used to reinforce plastics in applications that range from boats, to industrial piping to computer circuit boards.[25]

In the jewelry industry, boric acid is often used in combination with denatured alcohol to reduce surface oxidation and firescale from forming on metals during annealing and soldering operations.

Boric acid is used in the production of the glass in LCD flat panel displays.

In electroplating, boric acid is used as part of some proprietary formulas. One such known formula calls for about a 1 to 10 ratio of H
3BO
3 to NiSO
4, a very small portion of sodium lauryl sulfate and a small portion of H
2SO
4.

Boric acid, mixed with borax (sodium tetraborate decahydrate) at the weight ratio of 4:5, is highly soluble in water, though they are not so soluble separately.[26] The solution is used for fire retarding agent of wood by impregnation.[27]

It is also used in the manufacturing of ramming mass, a fine silica-containing powder used for producing induction furnace linings and ceramics.

Boric acid is one of the most commonly used substances that can counteract the harmful effects of reactive hydrofluoric acid (HF) after an accidental contact with the skin. It works by forcing the free F− anions into complex salts. This process defeats the extreme toxicity of hydrofluoric acid, particularly its ability to sequester ionic calcium from blood serum which can lead to cardiac arrest and bone decomposition; such an event can occur from just minor skin contact with HF.[28]

Boric acid is added to borax for use as welding flux by blacksmiths.[29]

Boric acid, in combination with polyvinyl alcohol (PVA) or silicone oil, is used to manufacture Silly Putty.[30]

Boric acid is also present in the list of chemical additives used for hydraulic fracturing (fracking) in the Marcellus Shale in Pennsylvania.[31] Indeed, it is often used in conjonction with guar gum as cross-linking and gelling agent for controlling the viscosity and the rheology of the fracking fluid injected at high pressure in the well. Indeed, it is important to control the fluid viscosity for keeping in suspension on long transport distances the grains of the propping agents aimed at maintaining the cracks in the shales sufficiently open to facilitate the gas extraction after the hydraulic pressure is relieved.[32][33][34] The rheological properties of borate cross-linked guar gum hydrogel mainly depend on the pH value.[35]

Medical
Boric acid can be used as an antiseptic for minor burns or cuts and is sometimes used in salves and dressings, such as boracic lint. Boric acid is applied in a very dilute solution as an eye wash. Dilute boric acid can be used as a vaginal douche to treat bacterial vaginosis due to excessive alkalinity,[36] as well as candidiasis due to non-albicans candida.[37] As an antibacterial compound, boric acid can also be used as an acne treatment. It is also used as prevention of athlete's foot, by inserting powder in the socks or stockings. Various preparations can be used to treat some kinds of otitis externa (ear infection) in both humans and animals.[38] The preservative in urine sample bottles in the UK is boric acid.

Boric acid solutions used as an eye wash or on abraded skin are known to be toxic, particularly to infants, especially after repeated use; this is because of its slow elimination rate.[39]

Insecticidal
Boric acid was first registered in the US as an insecticide in 1948 for control of cockroaches, termites, fire ants, fleas, silverfish, and many other insects. The product is generally considered to be safe to use in household kitchens to control cockroaches and ants. It acts as a stomach poison affecting the insects' metabolism, and the dry powder is abrasive to the insects' exoskeletons.[40][41][42] Boric acid also has the reputation as "the gift that keeps on killing" in that cockroaches that cross over lightly dusted areas do not die immediately, but that the effect is like shards of glass cutting them apart. This often allows a roach to go back to the nest where it soon dies. Cockroaches, being cannibalistic, eat others killed by contact or consumption of boric acid, consuming the powder trapped in the dead roach and killing them, too.[citation needed]

Preservation
In combination with its use as an insecticide, boric acid also prevents and destroys existing wet and dry rot in timbers. It can be used in combination with an ethylene glycol carrier to treat external wood against fungal and insect attack. It is possible to buy borate-impregnated rods for insertion into wood via drill holes where dampness and moisture is known to collect and sit. It is available in a gel form and injectable paste form for treating rot affected wood without the need to replace the timber. Concentrates of borate-based treatments can be used to prevent slime, mycelium, and algae growth, even in marine environments.

Boric acid is added to salt in the curing of cattle hides, calfskins, and sheepskins. This helps to control bacterial development, and helps to control insects.

pH buffer
Distribution between boric acid and borate ion versus pH assuming pKa = 9.0 (e.g. salt-water swimming pool)
Boric acid predominates in solution below pH 9
Buffer capacity of the boric acid - borate system versus pH assuming pKa = 9.0 (e.g. salt-water swimming pool)
Boric acid buffers against rising pH in swimming pools
Boric acid in equilibrium with its conjugate base the borate ion is widely used (in the concentration range 50 - 100 ppm boron equivalents) as a primary or adjunct pH buffer system in swimming pools. Boric acid is a weak acid, with pKa (the pH at which buffering is strongest because the free acid and borate ion are in equal concentrations) of 9.24 in pure water at 25 °C. But apparent pKa is substantially lower in swimming pool or ocean waters because of interactions with various other molecules in solution. It will be around 9.0 in a salt-water pool. No matter which form of soluble boron is added, within the acceptable range of pH and boron concentration for swimming pools, boric acid is the predominant form in aqueous solution, as shown in the accompanying figure. The boric acid - borate system can be useful as a primary buffer system (substituting for the bicarbonate system with pKa1 = 6.0 and pKa2 = 9.4 under typical salt-water pool conditions) in pools with salt-water chlorine generators that tend to show upward drift in pH from a working range of pH 7.5 - 8.2. Buffer capacity is greater against rising pH (towards the pKa around 9.0), as illustrated in the accompanying graph. The use of boric acid in this concentration range does not allow any reduction in free HOCl concentration needed for pool sanitation, but it may add marginally to the photo-protective effects of cyanuric acid and confer other benefits through anti-corrosive activity or perceived water softness, depending on overall pool solute composition.[43]

Lubrication
Colloidal suspensions of nanoparticles of boric acid dissolved in petroleum or vegetable oil can form a remarkable lubricant on ceramic or metal surfaces[44] with a coefficient of sliding friction that decreases with increasing pressure to a value ranging from 0.10 to 0.02. Self-lubricating H3BO3 films result from a spontaneous chemical reaction between water molecules and B2O3 coatings in a humid environment. In bulk-scale, an inverse relationship exists between friction coefficient and Hertzian contact pressure induced by applied load.

Boric acid is used to lubricate carrom and novuss boards, allowing for faster play.[45]

Nuclear power
Boric acid is used in some nuclear power plants as a neutron poison. The boron in boric acid reduces the probability of thermal fission by absorbing some thermal neutrons. Fission chain reactions are generally driven by the probability that free neutrons will result in fission and is determined by the material and geometric properties of the reactor. Natural boron consists of approximately 20% boron-10 and 80% boron-11 isotopes. Boron-10 has a high cross-section for absorption of low energy (thermal) neutrons. By increasing boric acid concentration in the reactor coolant, the probability that a neutron will cause fission is reduced. Changes in boric acid concentration can effectively regulate the rate of fission taking place in the reactor. Boric acid is used only in pressurized water reactors (PWRs) whereas boiling water reactors (BWRs) employ control rod pattern and coolant flow for power control. BWRs use an aqueous solution of boric acid and borax or sodium pentaborate for an emergency shut down system. Boric acid may be dissolved in spent fuel pools used to store spent fuel elements. The concentration is high enough to keep neutron multiplication at a minimum. Boric acid was dumped over Reactor 4 of the Chernobyl nuclear power plant after its meltdown to prevent another reaction from occurring.[citation needed]

Pyrotechnics
Boron is used in pyrotechnics to prevent the amide-forming reaction between aluminum and nitrates. A small amount of boric acid is added to the composition to neutralize alkaline amides that can react with the aluminum.

Boric acid can be used as a colorant to make fire green. For example, when dissolved in methanol it is popularly used by fire jugglers and fire spinners to create a deep green flame much stronger than copper sulfate.[46]

Agriculture
Boric acid is used to treat or prevent boron deficiencies in plants. It is also used in preservation of grains such as rice and wheat.

Boric Acid is a weakly acidic hydrate of boric oxide with mild antiseptic, antifungal, and antiviral properties. The exact mechanism of action of boric acid is unknown; generally cytotoxic to all cells. It is used in the treatment of yeast infections and cold sores.

NCI Thesaurus (NCIt)
Boric acid is an odorless white solid. Melting point 171°C. Sinks and mixes with water. (USCG, 1999)

CAMEO Chemicals
Boric acid is a member of boric acids. It has a role as an astringent. It is a conjugate acid of a dihydrogenborate.

Molecular Weight of Boric Acid:    61.84 g/mol    Computed by PubChem 2.1 (PubChem release 2019.06.18)
Hydrogen Bond Donor Count of Boric Acid:    3    Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18)
Hydrogen Bond Acceptor Count of Boric Acid:    3    Computed by Cactvs 3. of Boric Acid:4.6.11 (PubChem release 2019.06.18)
Rotatable Bond Count of Boric Acid:    0    Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18)
Exact Mass of Boric Acid:    62.017524 g/mol    Computed by PubChem 2.1 (PubChem release 2019.06.18)
Monoisotopic Mass of Boric Acid:    62.017524 g/mol    Computed by PubChem 2.1 (PubChem release 2019.06.18)
Topological Polar Surface Area of Boric Acid:    60.7 Ų    Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18)
Heavy Atom Count of Boric Acid:    4    Computed by PubChem
Formal Charge of Boric Acid:    0    Computed by PubChem
Complexity of Boric Acid:    8    Computed by Cactvs 3.4.6.11 (PubChem release 2019.06.18)
Isotope Atom Count of Boric Acid:    0    Computed by PubChem
Defined Atom Stereocenter Count of Boric Acid:    0    Computed by PubChem
Undefined Atom Stereocenter Count of Boric Acid:    0    Computed by PubChem
Defined Bond Stereocenter Count of Boric Acid:    0    Computed by PubChem
Undefined Bond Stereocenter Count of Boric Acid:    0    Computed by PubChem
Covalently-Bonded Unit Count of Boric Acid:    1    Computed by PubChem
Compound of Boric Acid Is Canonicalized:    Yes


Properties of boric acid

 

Molecular Formula:H3BO3 or B(OH)3 or BH3O3
Molecular Weight:61.831 g/mol

 

  Boric acid and its sodium borate salts are pesticides that we can find in nature and many products. Borax is one of the most common products. Boric acid and its sodium salts each combine boron with other elements in a different way. In general, their toxicities each depend on the amount of boron they contain.

  Boric acid and its sodium salts can be used to control a wide variety of pests. These include insects, spiders, mites, algae, molds, fungi, and weeds. Products that contain boric acid have been registered for use in the United States since 1948.

  Boric acid can kill insects if they eat it. It disrupts their stomach and can affect their nervous system. It can also scratch and damage the exterior of insects. Boric acid and borax, a sodium borate salt, can kill plants by causing them to dry out. Sodium metaborate, another sodium borate salt, stops plants from producing the energy they need from light. Boric acid can also stop the growth of fungi, such as mold. It prevents them from reproducing.

  You can be exposed if you are applying boric acid and you get it on your skin, in your eyes, breathe it in, or accidentally eat a product. This can also happen if you get some on your hands and eat or smoke without washing your hands first. Exposures can also occur if products are accessible to children or pets. You can limit your exposure to boric acid by following all label instructions carefully.

  Boric acid is low in toxicity if eaten or if it contacts skin. However, in the form of borax, it can be corrosive to the eye. Borax can also be irritating to the skin. People who have eaten boric acid have had nausea, vomiting, stomach aches, and diarrhea. Diarrhea and vomit may have a blue-green color. Eating extreme amounts has resulted in a red, "boiled lobster" like skin rash, followed by skin loss. People who breathed in borax had a dry mouth, nose, and throat. Coughing, sore throat, shortness of breath, and nose bleeds have also been reported. Infants are more sensitive to pesticide exposures. Some infants that ate large amounts of boric acid also had nervous system effects. These include abnormal postures, convulsions, confusion, and coma.

 

 

What are some products that contain boric acid?

 

Products containing boric acid can be liquids, granules, pellets, tablets, wettable powders, dusts, rods, or baits. They are used indoors in places like homes, hospitals and commercial buildings. They are also used in outdoor residential areas, sewage systems, and on food and non-food crops. There are over five hundred products with boric acid sold in the United States. Several non-pesticide products containing boric acid include soil amendments, fertilizers, household cleaners, laundry detergents, and personal care products.


What happens to boric acid when it enters the body?

 

Boric acid can absorb rapidly into the body if eaten. It is absorbed poorly by skin contact unless the skin is damaged. Studies with workers and rats showed that boric acid can also be absorbed if inhaled. However, it is not clear how much is directly absorbed in the lungs and how much is cleared from the lungs and swallowed. Once inside, boric acid generally moves evenly throughout the body. However, it can be stored in bone and is generally found at lower levels in fatty tissues. There is no evidence that boric acid is broken down in the body. The majority of boric acid in the body is eliminated in the urine within four days.


Consumer Uses

 

This substance is used in the following products:

Washing & cleaning products, anti-freeze products, heat transfer fluids, lubricants and greases, adhesives and sealants, laboratory chemicals, textile treatment products and dyes, water treatment chemicals and fillers, putties, plasters, modelling clay. This substance has an industrial use resulting in manufacture of another substance (use of intermediates).

 

Other release to the environment of this substance is likely to occur from:

Indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use, indoor use in long-life materials with low release rate (e.g. flooring, furniture, toys, construction materials, curtains, foot-wear, leather products, paper and cardboard products, electronic equipment) and outdoor use in long-life materials with low release rate (e.g. metal, wooden and plastic construction and building materials).

 


Manufacture

 

Release to the environment of this substance can occur from industrial use:

Manufacturing of the substance, as an intermediate step in further manufacturing of another substance (use of intermediates), as processing aid, formulation of mixtures, in the production of articles and formulation in materials. 

Other release to the environment of this substance is likely to occur from:

Indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners).

Uses
Boric acid is non-toxic with antibacterial properties, and it is mainly used as an antiseptic agent, acne treatment, preservative, insecticide, pH buffer, swimming pool chemical, flame retardant, and a precursor to many useful chemicals. It is used industrially for the manufacture of fiberglass, household glass products and the glass used in LCD displays.


Health Hazards/ Health Effects

Low concentrations of boric acid does not pose any toxicity. However, boric acid is poisonous if swallowed or inhaled in large quantities. High concentrations of boric acid can potentially lead to reproductive problems. Exposure to boric acid over long periods of time can cause possible kidney damage.

 Does it work?

If you’re living with recurrent or chronic yeast infections, boric acid may be a treatment worth investigating. Boric acid has been used to treat vaginal infections for over 100 years.

Not only is it antiviral and antifungal, but it also works to treat both Candida albicans and the more resistant Candida glabrata yeast strains.

Boric acid is available over the counter and can be placed inside gelatin capsules that you insert into your vagina.

Keep reading to learn more about this safe and affordable treatment method.

What the research says
In a reviewTrusted Source published in the Journal of Women’s Health, researchers evaluated multiple studies revolving around boric acid as a treatment for recurrent vulvovaginal candidiasis.

They found 14 studies in total — two randomized clinical trials, nine case series, and four case reports. Cure rates involving the use of boric acid varied between 40 and 100 percent, and none of the studies reported major differences in yeast infection recurrence rates.

The researchers concluded that with all the available research, boric acid is a safe alternative to other treatments. It’s also an affordable alternative to more conventional treatments that may fail to target the non-albicans or azole-resistant strains of yeast.

Usage recommendations vary among the studies. One studyTrusted Source examined the use of suppositories for 2 weeks versus 3 weeks. The result? There was little to no difference in outcome with the longer treatment duration.

 How to use boric acid suppositories
Before you try boric acid suppositories, make an appointment with your healthcare provider for a proper diagnosis. They can also offer guidance on how to use boric acid suppositories and other alternative remedies.

You can shop for premade boric acid suppositories at most drug stores or online.

Popular brands include:

pH-D Feminine Health Support
SEROFlora
BoriCap
You can also make your own capsules. You’ll need boric acid powder, which you can buy online, and size 00 gelatin capsules.
Possible side effects and risks
Although boric acid suppositories are generally safe for adults to use, minor side effects are possibleTrusted Source.

You may experience:

burning at the insertion site
watery discharge
redness in the vaginal area
If you experience severe discomfort, discontinue use. See your healthcare provider if your symptoms persist even after ending treatment.

You shouldn’t use boric acid suppositories if:

you’re pregnant, as the ingredients are toxic to the developing fetus
you have a scrape or other open wound in the vagina
Boric acid can be fatal when taken orally.

What is boric acid?
Boric acid and its sodium borate salts are pesticides that we can find in nature and many products. Borax is one of the most common products. Boric acid and its sodium salts each combine boron with other elements in a different way. In general, their toxicities each depend on the amount of boron they contain.

Boric acid and its sodium salts can be used to control a wide variety of pests. These include insects, spiders, mites, algae, molds, fungi, and weeds. Products that contain boric acid have been registered for use in the United States since 1948.


What are some products that contain boric acid?
Products containing boric acid can be liquids, granules, pellets, tablets, wettable powders, dusts, rods, or baits. They are used indoors in places like homes, hospitals and commercial buildings. They are also used in outdoor residential areas, sewage systems, and on food and non-food crops. There are over five hundred products with boric acid sold in the United States. Several non-pesticide products containing boric acid include soil amendments, fertilizers, household cleaners, laundry detergents, and personal care products.

Always follow label instructions and take steps to minimize exposure. If any exposures occur, be sure to follow the First Aid instructions on the product label carefully. For additional treatment advice, contact the Poison Control Center at 1-800-222-1222. If you wish to discuss a pesticide problem, please call 1-800-858-7378.

How does boric acid work?
Boric acid can kill insects if they eat it. It disrupts their stomach and can affect their nervous system. It can also scratch and damage the exterior of insects. Boric acid and borax, a sodium borate salt, can kill plants by causing them to dry out. Sodium metaborate, another sodium borate salt, stops plants from producing the energy they need from light. Boric acid can also stop the growth of fungi, such as mold. It prevents them from reproducing.


How might I be exposed to boric acid?
You can be exposed if you are applying boric acid and you get it on your skin, in your eyes, breathe it in, or accidentally eat a product. This can also happen if you get some on your hands and eat or smoke without washing your hands first. Exposures can also occur if products are accessible to children or pets. You can limit your exposure to boric acid by following all label instructions carefully.

What are some signs and symptoms from a brief exposure to boric acid?
Boric acid is low in toxicity if eaten or if it contacts skin. However, in the form of borax, it can be corrosive to the eye. Borax can also be irritating to the skin. People who have eaten boric acid have had nausea, vomiting, stomach aches, and diarrhea. Diarrhea and vomit may have a blue-green color. Eating extreme amounts has resulted in a red, "boiled lobster" like skin rash, followed by skin loss. People who breathed in borax had a dry mouth, nose, and throat. Coughing, sore throat, shortness of breath, and nose bleeds have also been reported. Infants are more sensitive to pesticide exposures. Some infants that ate large amounts of boric acid also had nervous system effects. These include abnormal postures, convulsions, confusion, and coma.


Boric acid affects animals in a similar way. If eaten, signs of poisoning in animals can start within 2 hours. See the fact sheet on Pets and Pesticide Use for more information.

What happens to boric acid when it enters the body?
Boric acid can absorb rapidly into the body if eaten. It is absorbed poorly by skin contact unless the skin is damaged. Studies with workers and rats showed that boric acid can also be absorbed if inhaled. However, it is not clear how much is directly absorbed in the lungs and how much is cleared from the lungs and swallowed. Once inside, boric acid generally moves evenly throughout the body. However, it can be stored in bone and is generally found at lower levels in fatty tissues. There is no evidence that boric acid is broken down in the body. The majority of boric acid in the body is eliminated in the urine within four days.

Is boric acid likely to contribute to the development of cancer?
No. The U.S. Environmental Protection Agency (EPA) concluded that boric acid is not likely to be carcinogenic to humans. In some experiments, mice and rats were fed boric acid and borax for two years. No evidence that boric acid or borax causes cancer was found.

Has anyone studied non-cancer effects from long-term exposure to boric acid?
Studies with workers breathing borax showed no long-term respiratory effects. However, long-term ingestion of boric acid has resulted in vomiting, nausea, diarrhea, and stomach pain. This is often followed by headaches, fever, tremors, twitching, a lack of energy, and weakness. Skin rashes, peeling and ulcers have also been reported. Severe cases of long-term ingestion have caused coma, seizures, the halting of blood circulation, liver and kidney dysfunction, a low red blood cell count and death.

Are children more sensitive to boric acid than adults?
Children may be especially sensitive to pesticides compared to adults. Seizures and death have been reported more often in infants exposed long-term to boric acid than adults. In the 1960's, several infant deaths were reported after improperly labeled boric acid disinfectants were accidentally used in infant formulas. In the 1970's and 80's, the use of a gum soothing product containing borax and honey on pacifiers resulted in several reports of seizures in infants. However, data which allows for direct comparison of children and adults is not available. Therefore, it is not clear whether children have increased sensitivity specifically to boric acid.

Children have different behaviors than adults that can put them at greater risk. They may crawl or play on the floor and put their hands or other items in their mouths. For this reason, many boric acid products require that they be applied in places out of children's reach. Consider getting down to your child's level to confirm after an application. Always carefully read and follow the label.

What happens to boric acid in the environment?

Boric acid naturally occurs in the environment. It can be found in soil, water, and plants. Boric acid dissolves in water and can move with water through the soil. Under certain soil conditions it can reach ground water. However, its mobility in soil depends on pH and the presence of some metals. Boric acid can also be taken up from the soil by plants. It moves through plants into their leaves. Once there, it generally becomes stuck and does not move into the fruit. Plants need boron, a major component of boric acid, to grow. However, too much boron can be toxic to plants affecting their growth. Citrus, stone fruits, and nut trees are most sensitive to boron.

Boric acid does not emit vapors into the atmosphere. Particles that get into the air do not break down. They settle to the ground or are removed by rain.

Can boric acid affect birds, fish, or other wildlife?

Boric acid is practically non-toxic to birds. It is slightly toxic to practically non-toxic to freshwater fish. Boric acid is practically non-toxic to frogs and toads and aquatic life, such as waterfleas. The U.S. EPA concluded that boric acid is relatively nontoxic to bees.

 

  • Share !
E-NEWSLETTER