Quick Search

PRODUCTS

GLYOXYLIC ACID 50%

Glyoxylic acid is a 2-oxo monocarboxylic acid that is acetic acid bearing an oxo group at the alpha carbon atom.  It is a 2-oxo monocarboxylic acid and an aldehydic acid. It is a conjugate acid of a glyoxylate.

CAS Number 298-12-4
EINECS Number 206-058-4

Synonyms:
glyoxylic acid; 298-12-4; 2-Oxoacetic Acid; Glyoxalic acid; Oxoacetic acid; Oxoethanoic acid; Formylformic acid; Acetic acid, oxo-; Oxalaldehydic acid; alpha-Ketoacetic acid; glyoxalate; Formic acid, formyl-; 2-Oxoacetic acid(50% in water); oxaldehydic acid; Acetic acid, 2-oxo-; Kyselina glyoxylova; CCRIS 1455; HSDB 5559; 563-96-2; UNII-JQ39C92HH6; NSC 27785; OCHCOOH; .alpha.-Ketoacetic acid; MFCD00006958; JQ39C92HH6; Glyoxylic acid, 50% in water; CHEBI:16891; glyox; oxoacetate; NSC27785; GLYOXALATE, GLYOXYLATE; glyoxalic acid hydrate; NSC 27785;Formylformic acid;Oxalaldehydic acid; Oxo-acetic acid; Kyselina glyoxylova [Czech]; GLV; EINECS 206-058-5; BRN 0741891; Formylformate; Glyoxalsaeure; Glyoxylsaeure; Oxalaldehydate

Glyoxylic acid is a highly reactive chemical intermediate having two functional groups: the aldehyde group and the carboxylic acid group. Strong organic acid (Ka=4.7x10-4), miscible in water & alcohol, insoluble in organic solvents. It is supplied as a 50% water solution.Glyoxylic acid is an important C2 building block for many organic molecules of industrial importance, used in the production of agrochemicals, aromas, cosmetic ingredients, pharmaceutical intermediates and polymers.Glyoxylic acid finds application in personal care as neutralizing agent, it is widely used in hair straightening products in particular (shampoos, conditioners, lotions, creams) at levels of 0.5-10%.GLYOXYLIC ACID is a carboxylic acid. Preparative hazard, nitric acid and glyoxal to produce glyoxylic acid has had explosive consequences. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in it to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions.Supplied as a 50% aqueous solution. Colorless to straw yellow. Very soluble in water; slightly soluble in ethanol, ethyl ether, and benzene.Crystals from water; melting point: 70-75 °C; obnoxious odor; strong corrosive acid; K= 4.6X10-4; deliquesces; attacks most stable metals except certain stainless steel alloys; aq soln tend to acquire a yellow tint.Metabolıc studıes usıng varıous substates ındıcated that at low levels of exposure, adverse effects of ethylene glycol on mıtochondrıa were attrıbutable to formatıon of glyoxylate & ınteractıon of thıs metabolıte wıth cıtrıc acıd cycle ıntermedıates.Trichloroethylene was metabolized by cytochrome p450 containing mixed-function oxidase systems to chloral (2,2,2-trichloroacetaldehyde), glyoxylic acid, formic acid, carbon monoxide and trichloroethylene oxide. trichloroethylene oxide was synthesized, and its breakdown products were analyzed. Under acidic aqueous conditions the primary products were glyoxylic acid and dichloroacetic acid. The primary compounds formed under neutral or basic aqueous conditions were formic acid and carbon monoxide. Trichloroethylene oxide did not form chloral in any of these or other aqueous systems, even when iron salts, ferriprotoporphyrin IX or purified cytochrome p450 was present. Ferric iron salts catalyzed the rearrangement of trichloroethylene oxide to chloral only in dichloromethane or CH3CN. A 500-fold excess of iron was required for complete conversion. A kinetic model involving the zero order oxidation of trichloroethylene to trichloroethylene oxide by cytochrome p450 and 1st-order degradation of the epoxide was used to test the hypothesis that trichloroethylene oxide was an obligate intermediate in the conversion of trichloroethylene to other metabolites. Kinetic constants for the breakdown of trichloroethylene oxide and for the oxidative metabolism of trichloroethylene to stable metabolites were used to predict epoxide concentrations required to support the obligate intermediacy of trichloroethylene oxide. The maximum levels of trichloroethylene oxide detected in systems using microsomal fractions and purified cytochrome p450 were 5- to 28-fold lower than those predicted from the model. The kinetic data and the discrepancies between the observed metabolites and trichloroethylene oxide breakdown products supported the view that the epoxide was not an obligate intermediate in the formation of chloral, and an alternative model was presented in which chlorine migration occurred in an oxygenated trichloroethylene-cytochrome p450 transition state.The complete metabolic fate of the volatile anesthetic halothane is unclear since 2-chloro-1,1-diflurorethene (CDE), a reductive halothane metabolite, is known to readily release inorganic fluoride upon oxidation by cytochrome p450. This study sought to clarify the metabolism of CDE by determining its metabolites and the roles of induced cytochrome p450 forms in its metabolism. Upon incubation of (14)C CDE with rat hepatic microsomes, two major radioactive products were found which accounted for greater than 94% of the total metabolites. These compounds were determined to be the nonhalogenated compounds, glyoxylic and glycolic acids, which were formed in a ratio of approximately 1 to 2 of glyoxylic to glycolic acid. No other radioactive metabolites could be detected. Following incubation of CDE with hepatic microsomes isolated from rats treated with cytochrome P-450 inducers, measurement of fluoride release showed that phenobarbital induced CDE metabolism to the greatest degree at high CDE levels, isoniazid was the most effective inducer at low CDE concentrations, and beta-naphthoflavone was ineffective as an inducer. These results suggest that CDE biotransformation primarily involves the generation of an epoxide intermediate, which undergoes mechanisms of decay leading to total dehalogenation of the molecule, and that this metabolism is preferentially carried out by the phenobarbital- and ethanol-inducible forms of cytochrome p450.Patıents sufferıng from prımary hyperoxalurıa show elevated plasma concn of oxalıc acıd & glyoxylıc acıd. In vıtro adsorptıon of these cmpd ınto varıous substances was ınvestıgated. Hydrous zırconıum oxıde was most effectıve sorbent studıed for removal of oxalıc acıd & glyoxylıc acıd. In batch expt, zırconıum oxıde was capable of bındıng 5.5 umol oxalıc acıd & 8 umol of glyoxylıc acıd/g sorbent usıng 0.5 g sorbent/l & ıonıc composıtıon resemblıng that of plasma. Recırculatıon of 2 l of the same soln through 12 g of mıxt of hydrous zırconıum oxıde & alumına for 6 hr at flow rate of 12 ml/mın, resulted ın fınal concn of 70 umol/l of oxalıc acıd & 50 umol/l of glyoxylıc acıd.GLYOXYLIC ACID is a carboxylic acid. Preparative hazard, nitric acid and glyoxal to produce glyoxylic acid has had explosive consequences. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in it to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions.It has been proposed that administration of non-nitrogenous precursors to glycine is necessary to realize the full potential of benzoate metabolism as a pathway for disposal of waste nitrogen during ammonia intoxication. However, when glyoxylate, a keto acid precursor to glycine, was administered with benzoate 1 hr prior to a challenge of ammonia, protection against ammonia toxicity was less successful than with benzoate alone. At the cellular and subcellular levels, glyoxylate and benzoate each inhibited the urea cycle in isolated hepatocytes and pyruvate carboxylase in isolated mitochondria. The action of each drug was associated with depletion of aspartate content in isolated hepatocytes and reduction of pyruvate-dependent incorporation of carbon dioxide into aspartate in assays with isolated mitochondria. Depression of aspartate regeneration by inhibition of pyruvate carboxylase is a likely mechanism for impairment of urea cycle activity by both drugs. In whole animals, inhibition of pyruvate carboxylase may contribute to benzoate toxicity and the adverse influence of glyoxylate on benzoate therapy.Piridoxilate is given in cases of angina pectoris or arteritis. It is an intramolecular association of glyoxylic hemiacetal salts of pyridoxine. Glyoxylate has a membranous protective action; pyridoxine is used for the theoretical purpose of preventing oxidation of glyoxylic acid to oxalic acid. Twelve patients were observed with an active calcium oxalate lithiasis who had been taking piridoxilate for many years. Hyperoxaluria was present in all patients and decreased significantly when the drug was interrupted. Significant hyperoxaluria was also observed in volunteers after ingestion of piridoxilate (600 mg per day) or iv (200 mg).Glyoxylic acid's production and use as a cleaning agent for a variety of industrial applications, as a speciality chemical and biodegradable copolymer feedstock and as an ingredient in cosmetics may result in its release to the environment through various waste streams. Glyoxylic acid occurs as a natural constituent of plants (such as unripe fruit and young green leaves) and is a metabolite in mammalian biochemical pathways. If released to air, an estimated vapor pressure of 1 mm Hg at 25 °C indicates glyoxylic acid will exist solely as a vapor in the ambient atmosphere. Vapor-phase glyoxylic acid will be degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 29 hours. Vapor-phase glyoxylic acid degrades rapidly by direct photolysis (daytime persistence is not expected to exceed a few hours). If released to soil, glyoxylic acid is expected to have very high mobility based upon an estimated Koc of 1. The pKa of glyoxylic acid is 3.3, indicating this compound will exist primarily as an anion in moist soil surfaces and anions are expected to have very high mobility in soils. Volatilization of glyoxylic acid from moist soil or water surfaces is not expected to be an important fate process since the anion will not volatilize and the neutral species has an estimated Henry's Law constant of 3X10-9 atm-cu m/mole at 25 °C. Glyoxylic acid may volatilize from dry soil surfaces based upon its vapor pressure. If released into water, glyoxylic acid is not expected to adsorb to suspended solids and sediment based upon its estimated Koc. If released to soil or water, glyoxylic acid is expected to biodegrade. Degradation may also occur in sunlit water through direct photolysis. An estimated BCF of 3 suggests the potential for bioconcentration in aquatic organisms is low. Occupational exposure to glyoxylic acid may occur through inhalation and dermal contact with this compound at workplaces where glyoxylic acid is produced or used. Since glyoxylic acid is used in cosmetic preparation, the general population may be exposed to this compound through the use of these products.Glyoxylic Acid (GXA) is a colorless solid and a highly reactive chemical intermediate having two functional groups: an aldehyde group and a carboxylic acid group. Glyoxylic Acid is soluble in water and ethanol, slightly soluble in organic solvents like ether or benzene, and insoluble in esters aromatic solvents. Aqueous solutions of Glyoxylic Acid are transparent, colorless or light yellow liquids.Glyoxylic acid or oxoacetic acid is an organic compound. Together with acetic acid, glycolic acid, and oxalic acid, glyoxylic acid is one of the C2 carboxylic acids. It is a colourless solid that occurs naturally and is useful industrially.Although the structure of glyoxylic acid is described as having an aldehyde functional group, the aldehyde is only a minor component of the form most prevalent in some situations. Instead, it often exists as a hydrate or a cyclic dimer. For example, in the presence of water, the carbonyl rapidly converts to a geminal diol (described as the "monohydrate").The conjugate base of glyoxylic acid is known as glyoxylate and is the form that the compound exists in solution at neutral pH. Glyoxylate is the byproduct of the amidation process in biosynthesis of several amidated peptides.For the historical record, glyoxylic acid was prepared from oxalic acid electrosynthetically:[9][10] in organic synthesis, lead dioxide cathodes were applied for preparing glyoxylic acid from oxalic acid in a sulfuric acid electrolyte.Hot nitric acid can oxidize glyoxal to glyoxylic; however this reaction is highly exothermic and prone to thermal runaway. In addition, oxalic acid is the main side product.Also, ozonolysis of maleic acid is effective.Glyoxylate is an intermediate of the glyoxylate cycle, which enables organisms, such as bacteria,fungi, and plants to convert fatty acids into carbohydrates. The glyoxylate cycle is also important for induction of plant defense mechanisms in response to fungi.The glyoxylate cycle is initiated through the activity of isocitrate lyase, which converts isocitrate into glyoxylate and succinate. Research is being done to co-opt the pathway for a variety of uses such as the biosynthesis of succinate.Glyoxylate is involved in the development of hyperoxaluria, a key cause of nephrolithiasis (commonly known as kidney stones). Glyoxylate is both a substrate and inductor of sulfate anion transporter-1 (sat-1), a gene responsible for oxalate transportation, allowing it to increase sat-1 mRNA expression and as a result oxalate efflux from the cell. The increased oxalate release allows the buildup of calcium oxalate in the urine, and thus the eventual formation of kidney stones.The disruption of glyoxylate metabolism provides an additional mechanism of hyperoxaluria development. Loss of function mutations in the HOGA1 gene leads to a loss of the 4-hydroxy-2-oxoglutarate aldolase, an enzyme in the hydroxyproline to glyoxylate pathway. The glyoxylate resulting from this pathway is normally stored away to prevent oxidation to oxalate in the cytosol. The disrupted pathway, however, causes a buildup of 4-hydroxy-2-oxoglutarate which can also be transported to the cytosol and converted into glyoxylate through a different aldolase. These glyoxylate molecules can be oxidized into oxalate increasing its concentration and causing hyperoxaluria.Glyoxylic acid is one of several ketone- and aldehyde-containing carboxylic acids that together are abundant in secondary organic aerosols. In the presence of water and sunlight, glyoxylic acid can undergo photochemical oxidation. Several different reaction pathways can ensue, leading to various other carboxylic acid and aldehyde products.Glyoxylic Acid 50 is supplied as 50% water solution. It is used in personal care products as a neutralizing agent and is used for hair straightening products in particular including shampoos, conditioners, rinses, lotions and creams. It is also used in the production of agrochemicals, aromas, pharmaceutical intermediates and polymers.In the control and in the test medium with the nominal concentration of 200 mg/L (= Glyoxylic acid 100.3 mg/L) all fish survived until the end of the test and no visible abnormalities were observed at the test fish. Therefore, the 96-h NOEC and the 96-h LC0 were determined to be at least 200 (100.3 ) mg/L. The 96-h NOEC and the 96-h LC0 might even be higher than this concentration, but concentration in excess of 200 (100.3) mg/L have not been tested.The 96-h LOEC, the 96-h LC50 and the 96-h LC100 were clearly higher than 200 (100.3) mg/L. These values could no be quantified due to the absence of toxicity of Glyoxylic acid 50 % at the tested concentration.No remarkable observation were made concerniong the appearance of the test medium. It was a clear solution throught the entire test duration.Glyoxylic Acid. Acts as a neutralizing agent. It is highly reactive chemical intermediate having two functional groups: the aldehyde group and the carboxylic acid group. It is an important C2 building block for many organic molecules of industrial importance, used in the cosmetic ingredients. It finds its application in personal care and is widely used in hair straightening products in particular (shampoos, conditioners, lotions, and creams).Glyoxylic acid is used in Hopkins Cole reaction, which is used in the detection of tryptophan in proteins. It reacts with phenol to get 4-hydroxymandelic acid, which on further reaction with ammonia gives hydroxyphenylglycine, as a precursor to the drug amoxicillin. It is also used as a starting material for the preparation of 4-hydroxyphenylacetic acid, which is used to get atenolol. It is involved in the production of agrochemicals, aromas, cosmetic ingredient and pharmaceutical intermediate. It is also used in water purification and in the preservation of food. Further, it is employed as precursor in the synthesis of iron chelates. In addition to this, it serves as an intermediate of varnish material and dyes.Miscible with ethanol. Slightly miscible with ether and benzene. Immiscible with esters.Incompatible with metals, alkalies, strong oxidizing agents and strong bases.Glyoxylic acid is a 2-oxo monocarboxylic acid that is acetic acid bearing an oxo group at the alpha carbon atom.

Glyoxylic acid has been employed:
• as reducing agent in electroless copper depositions by free-formaldehyde method[2]
• in synthesis of new chelating agent, 2-(2-((2-hydroxybenzyl)amino)ethylamino)-2-(2-hydroxyphenyl)acetic acid (DCHA).

Related Categories Aldehydes, Building Blocks, C1 to C5, C1 to C6, Carbonyl Compounds,
Carboxylic Acids, Chemical Synthesis, Organic Building Blocks
Quality Level 200
concentration 50 wt. % in H2O
refractive index n20/D 1.4149
density 1.342 g/mL at 25 °C
SMILES string OC(=O)C=O
InChI   1S/C2H2O3/c3-1-2(4)5/h1H,(H,4,5)
InChI key   HHLFWLYXYJOTON-UHFFFAOYSA-N

Trade Name        
GLYOXYLIC ACID 50

CAS Number 298-12-4
EINECS Number 206-058-4
INCI Name Glyoxylic acid
Other names Oxoethanoic acid, Oxoacetic acid, Acetic acid, Oxo-, Glyoxalic acid
Formula    C2H2O3
Molecular weight 74.04
Linear Formula HC(O)COOH
Beilstein 03, IV, 1489
Fieser    05,320; 07,162; 09,228
Merck Index 15, 4546
Density    1.3000g/mL
Formula Weight 74.04
Physical Form Liquid
Percent Purity ≥50%
Packaging Glass bottle
Refractive Index 1.4140 to 1.4180
Solubility Solubility in water: miscible.
Specific Gravity 1.3
Boiling Point 111.0°C
Color    Colorless to Yellow
Melting Point -93.0°C
Quantity 5g
Chemical Name or Material Glyoxylic acid, 50% in water

Molecular Formula C2H2O3
CAS 298-12-4
European Community (EC) Number 206-058-5

Storage: store in dry and cool place keep away from sunshine and rain

  • Share !
E-NEWSLETTER