Quick Search

PRODUCTS

LOPON 800

LOPON 800

CAS No. : 9003-04-7
EC No. : 618-349-8

Synonyms:
lopon; lopon-800; lopon_800; lopon800; löpön 800; POLYRON N; Polyacrylate, sodium salt; 9003-04-7; Sodium polyacrylate; Poly(sodium prop-2-enoate); SODIUM ACRYLATE; 7446-81-3; 2-Propenoic acid, sodium salt; sodium prop-2-enoate; Sodium polyacrylate; Polyco; Acrysol lmw-45N; Sodium 2-propenoate; sodium;prop-2-enoate; Rhotex GS; UNII-7C98FKB43H; Hiviswako 105; Sodium poly acrylate; Polyacrylate sodium salt; Acrylic acid, sodium salt; 2594415; Sodium polyacrylate 4500; Lopon 800; Sodium polyacrylate solution; 2-Propenoic acid, sodium salt (1:1); Polyacrylic acid, sodium salt; Lopon 800; CCRIS 3235; Poly(acrylic acid), sodium salt; Acrylic acid polymer, sodium salt; LOPON 800; Polyacrylate, sodium salt; LOPON 810; LOPON 827; LOPON 828; LOPON 890; LOPON 895; LOPON 990; LOPON DK; LOPON DV; LOPON E 13; LOPON E 71; LOPON E 81; LOPON P; LOPON ST; LOPON 888; LOPON PO; Dispersing Agents; Surfactants-like; Sodium Polyacrylates ;Polyacrylic Acids; dispersing agent; sodium polyacrylate; Lopon 800; Polyacrylate, Sodium Salt; Lopon 810; Lopon 827; Lopon 828; Lopon 890; Lopon 895; Lopon 990; Lopon Dk; Lopon Dv; Lopon E 13; Lopon E 71; Lopon E 81; Lopon P; Lopon St; Lopon 888; Lopon Po; Dispersing Agents; Surfactants-Like; Sodium Polyacrylates ;Polyacrylic Acids; Dispersing Agent; Sodium Polyacrylate; LOPON-810; LOPON-827; LOPON-828; LOPON-890; LOPON-895; LOPON-990; LOPON-DK; LOPON-DV; LOPON E-13; LOPON E-71; LOPON E-81; LOPON-P; LOPON-ST; LOPON-888; LOPON-PO; 2-PROPENOIC ACID, HOMOPOLYMER, SODIUM SALT; Acrylic acid, polymers, sodium salt; Propenoic acid, sodium carbonate polymer; 28603-11-4; 2-Propenoic acid, sodium salt, homopolymer; Lopon 800; HSDB 6087; Sodium 2-propenoate, homopolymer; polyacrylate sodium; 2-Propenoic acid, sodium salt (1:1), homopolymer; EINECS 231-209-7; 25549-84-2; ACMC-1BIST; Polyacrylc acd sodum salt; C3H3NaO2; DSSTox_CID_7652; Sodium polyacrylate; PAAS; (C3H3NaO2)n; Lopon 800; 2-propenoic acid sodium salt; Sodium acrylate 7446-81-3; Poly(acrylic acid sodium salt) powder; Poly(acrylic acid sodium salt) Powder Mw~5000; Poly(acrylic acid sodium salt)50 wt. % in H2O; 2-Propenoic acid sodium salt; Acrylic acid sodium salt; Poly(acrylic acid sodium salt) average 30 wt. % in H2O


Lopon 800

LOPON 800 is a VOC-free universal dispersing agent based on sodium polyacrylates for interior and exterior water based paints.

FEATURES
LOPON 800 offers good storage stability, high gloss attributes, and demonstrated stability when used in combination with glycol.

BENEFITS
LOPON 800 is highly compatible with polyphosphates such as POLYRON N to improve scrub resistance. This product offers very good storage stability.

RECOMMENDATIONS
Emulsions paints, varnishes, plasters, silicate emulsion paints, and adhesives.


Dispersing agent for emulsion paints, varnishes, plasters, silicate emulsion paints and adhesives
Nomenclature Polyacrylate, sodium salt

Appearance amber liquid
Characteristics pH-value: 7.0 – 8.5

Spec. Properties Density: approx. 1300 g/l
 Residual monomer: < 0.1 %

Application LOPON 800 offers the following advantages:
• easy dosage
• highly effective
• excellent deflocculation, high solids content available
• ideally adjusted to polyphosphates like CALGON N for obtaining washing and scrubbing resistant emulsion paints
• good storage stability
• stable with glycol
• high gloss
The usual dosage of LOPON 800 in a formulation is 0.2 – 0.5%
Storage protect from frost; carefully close open packaging after usage
Packaging Container of 1.200 kg net; PE-drum of 250 kg net


LOPON 800 is a dispersing agent for emulsion paints, varnishes, plasters, silicate emulsion paints and adhesives. This clear, yellowish liquid is a polyacrylate, sodium salt. It is ideally adjusted to polyphosphates like CALGON N for obtaining washing and scrubbing resistant emulsion paints. It also offers good storage stability, high gloss, and is stable with glycol.

Product description of Lopon 800
Dispersing additives

LOPON 800 by ICL Industrial is a highly effective, VOC-free universal dispersing agent. It is based on sodium polyacrylate. It is recommended for interior and exterior water-based paints. It offers easy dosage, excellent deflocculation and high solids content. It is ideally adjusted to polyphosphates like CALGON N for obtaining washing and scrubbing resistant silicate emulsion paints & varnishes. It provides good storage stability, stability with glycol and high gloss. The dosage level of LOPON 800 is 0.2–0.5%.

Product Type Dispersing Agents > Surfactants-like > Sodium Polyacrylates / Polyacrylic Acids
Chemical Composition Sodium polyacrylate-based
CAS Number 9003-04-7
Physical Form Liquid
Appearance Amber
Product Status COMMERCIAL
Applications/ Recommended for 
Coatings > Waterborne
Resins > Silicates


Lopon 800, also known as waterlock, is a sodium salt of polyacrylic acid with the chemical formula [−CH2−CH(CO2Na)−]n and has broad applications in consumer products.[1] This super-absorbent polymer (SAP) has the ability to absorb 100 to 1000 times its mass in water. Lopon 800 is an anionic polyelectrolyte with negatively charged carboxylic groups in the main chain. Lopon 800 is a chemical polymer made up of chains of acrylate compounds. It contains sodium, which gives it the ability to absorb large amounts of water. Lopon 800 is also classified as an anionic polyelectrolyte.[2] When dissolved in water, it forms a thick and transparent solution due to the ionic interactions of the molecules. Lopon 800 has many favorable mechanical properties. Some of these advantages include good mechanical stability, high heat resistance, and strong hydration. It has been used as an additive for food products including bread, juice, and ice cream.

While sodium neutralized polyacrylic acids are the most common form used in industry, there are also other salts available including potassium, lithium and ammonium.[3] The origins of super-absorbent polymer chemistry trace back to the early 1960s when the U.S. Department of Agriculture (USDA) developed the first super-absorbent polymer materials.

Identifiers of Lopon 800
CAS Number 
9003-04-7 (2500000 MW) check
ECHA InfoCard 100.118.171 Edit this at Wikidata
EC Number 
618-349-8
UNII 
05I15JNI2J (2500000 MW) check
CompTox Dashboard (EPA) 
DTXSID0049783 Edit this at Wikidata

Properties of Lopon 800
Chemical formula (C3H3NaO2)n
Molar mass Variable
Density 1.22 g/cm3


Background and History of Lopon 800
Super-absorbent polymers similar to Lopon 800 were developed in the 1960s by the U.S. Department of Agriculture.[3] Before the development of these substances, the best water absorbing materials were cellulosic or fiber-based like tissue paper, sponge, cotton, or fluff pulp. These materials can only retain 20 times their weight in water, whereas Lopon 800 can retain hundreds of times its own weight in water. The USDA was interested in developing this technology because they wanted to find materials that could improve water conservation in soil. Through extensive research, they found that the gels they created did not expel water as fiber-based materials would. Early adopters of this technology were Dow Chemical, Hercules, General Mills Chemical, and DuPont. Ultra-thin baby diapers were some of the first hygiene products to be developed which uses only a fraction of the material compared to fluff pulp diapers. Super-absorbent technology is in high demand in the disposable hygiene industry for products like diapers and sanitary napkins. SAPs used in hygiene products are typically sodium neutralized whereas SAPs used in agricultural applications are potassium neutralized.

Fabrication Methods
Overview
Methods to fabricate Lopon 800, like solution polymerization in water, inverse emulsion polymerization, inverse suspension polymerization, plasma polymerization, and pressure-induced polymerization have been employed to synthesize various polyacrylates.[4] However, the process to obtain a solid-state product using these methods requires a lot of equipment and is very expensive. The products obtained from these methods also have defects like poor solubility and broad molecular weight distribution. Despite having drawbacks, the polymerization methods aforementioned are often used to form Lopon 800 and other SAPs.

Another method tested in a study to produce Lopon 800 as an alternative to current methods began with Butyl acrylate-acrylic acid copolymer and poly (butyl acrylate).[4] They were synthesized via suspension polymerization by using butyl acrylate as the main monomer and acrylic acid as a secondary monomer. Suspension polymerization uses physical and mechanical movement and agitation in order to mix monomers to form polymers. This process requires dispersing medium, monomers, stabilizing agents, and initiators. Next, the polymers were swollen in ethanol and hydrolyzed in an aqueous solution of sodium hydroxide. Finally, water-soluble Lopon 800s were obtained by washing and drying the hydrolyzed resultant. This is a different method compared to the manufacturing processes that have been previously utilized, but could be a potential method to specifically manufacture Lopon 800. Overall, the various production methods of Lopon 800 will influence its swelling capability, absorbency, and other mechanical properties. It is also important to consider cost and feasibility when manufacturing polymers like Lopon 800.

Super-absorbent Nanofibers (SANs) Lopon 800
Super-absorbent polymers are an innovative class of hydrogel products that can be used in many applications including hygiene products, drug delivery systems, agriculture, biomedicine, and wastewater treatment.[6] A method called electrospinning is used to fabricate super-absorbent nanofibers (SANs) because of their advantageous properties like high surface area and porous structure. Electrospinning is a simple method that uses an electric field that collects filaments by forcing polymer melts or solutions. SANs have been successfully created by using Lopon 800 and poly(vinyl alcohol) (PVA) as a polymer matrix, which is a water soluble polymer that is highly hydrophilic. As a result of this method of fabrication, SANs created in a study displayed high rates of absorption due to the capillary phenomenon shown by their highly porous structures. Also, the cross-linking structure improved the water absorption ability of the SANs. Adding PVA in this case gave structural stability to the SAN and prevented it from being dissolved in water. Overall, Lopon 800 can be combined with PVA in a nanofiber to produce a strong and effective structure.


Composites
Clay-Polymer Hydrogels
Studies have been conducted which observe the effect of the mechanical properties of hydrogels based on the amount of clay combined with the polymer.[7] When combining polymers with clay, the results are promising, showing an increase in the elastic modulus and the tensile strength of clay-polymer hydrogels. In general, combining inorganic substances with polymers can improve the electrical, mechanical, thermal, and gas barrier properties of materials like hydrogels. In order to obtain these results, ultra-high molecular mass polymers higher than a few millions are recommended to be used so that the mechanical properties can improve regardless of the type of polymer used.

The mechanical properties for clay-polymer hydrogels have been studied including clay and polyethylene oxide (PEO) as well as clay and Lopon 800 (PAAS).[7] A study compared laponite/PEO and laponite/PAAS blend hydrogels. Laponite is a synthetic clay that has the ability to swell when placed in water. The results showed that both hydrogels have a similar elastic modulus. However, the tensile strength of laponite/PAAS is much stronger than laponite/PEO blend hydrogels. The reason for this difference is based on the clay-polymer interaction strength in each hydrogel blend. In laponite/PAAS, the interaction is much stronger compared to the laponite/PEO blend.

Metal Ions
Experiments and studies have shown that the incorporation of 0.3 wt% Lopon 800 in collagen (Co) fibers can improve the mechanical properties and thermal stability of the composite films.[2] Lopon 800 can form films and composites with different cationic polymers, proteins, and other substances which can benefit the properties of the film. Furthermore, Lopon 800 has the potential to combine with metal ions because of its characteristic polyanionic property which would allow for more reinforcing of the material. When collagen and Lopon 800 (Co-PAAS) blend films were combined with Ca2+, Fe3+, and Ag+ ranging from 0.001 to 0.004 mol/g, the surface of the composites became coarser and the internal structure became more stratified as more metal ions were added. When the ions were added, tensile strength increased. The optimal amounts for each ion are as follows: Ca2+ (0.003 mol/g), Fe3+ (0.002 mol/g), and Ag+ (0.001 mol/g). The composite films also had better thermal stability.

Overall, the study showed that metal ions added to Co-PAAS blend composite films can be used as an alternative to reinforce collagenous composite materials.[2] These three ions were combined with the Co-PAAS film because of their relevant biological applications. Ca2+ is one of the major elements in animal tissues including bone and teeth and has a strong interaction with collagen. Next, Fe3+ is an important trace element in the human body and participates in protein chelation. Finally, Ag+ has antibacterial properties and can improve the stability and transparency of the Co-PAAS film.

Chitosan
Lopon 800 is a commonly used electronegative polyelectrolyte which could be used to construct self-healing hydrogels and super-absorbents.[8] Novel chitosan/Lopon 800 polyelectrolyte complex hydrogels (CPG) have been fabricated successfully in a study by cross-linking chitosan and Lopon 800 with epichlorohydrin (ECH) through the inhibiting protonation effect of chitosan in an alkali/urea aqueous solution. The CPG had a high swelling ratio because of Lopon 800 and acted differently in various pH solutions, physiological solutions, and salt solutions with different concentrations. As a result, CPG had smart responsive properties to different situations and exhibited high compressive strength, good biocompatibility and in-vitro biodegradability. This fabrication process has shown success and has potential applications in the fields of agriculture, foods, tissue engineering, and drug delivery.

Applications of Lopon 800

Overview
Water-soluble polymers are used in many industries, especially polyacrylates.[4] Some applications include thickeners, flocculants, dispersants, and drag reducing agents. Polyacrylates are also used as environmentally friendly adhesives or coatings.

In addition, Lopon 800 is used in paper diapers and Maximum Absorbency Garments as the absorbent material.[9] It is also used in ice packs to convert the water used as the cooling agent into a gel, in order to reduce spillage in case the ice pack leaks.[10][11] Lopon 800 has also been studied for utilization in many applications such as nanofiltration of water to absorb water and concentrate the liquid with microbes.[12] Also, it is used for eco-engineering as a water-retaining agent in rocky slopes for increasing moisture availability in the soil. This can improve the water retention availability of the soil and infiltration capacity in sandy soil. Below is a table containing categories and lists of some products and applications that utilize Lopon 800:[13]

Lopon 800 Applications Overview
Health Care Animals Industry Environment Other Products
Paper/disposable diaper (baby, child, and adult)
Sanitary napkin
Nursing mat
Medical bandage
Wound dressings
Pet pad
Horse urine odor absorbing
Drown-free water source for feeder insects
Waste liquid control
Drilling fluid
Concrete protection
Anti-flood Bag
Excreta collection
Wire and cable water blocking
Artificial snow
hot/cold gel pack
Urine bag
Growing toys
Thickening agent
Fragrance carrier
Fire-retardant gel
Anti-fogging packing material
Waterbed
Some of the items listed above will be discussed in further detail in the next application sections. However, it is important to note that the table provided above is not comprehensive and does not contain all of the possible or potential applications for using Lopon 800.

Sequestering Agents
Lopon 800 is commonly used in detergents as a chelating agent.[1] A chelating agent is used in detergents because it has the ability to neutralize heavy metals that can be found in dirt, water, and other substances that could be in clothes. The addition of Lopon 800 makes detergent more effective when cleaning clothes.

Thickening Agents
Since Lopon 800 can absorb and retain water molecules, it is used often in diapers, hair gels, and soaps.[1] Lopon 800 is considered a thickening agent because it increases the viscosity of water-based compounds. In diapers, Lopon 800 absorbs water found in urine in order to increase the capacity to store liquid and to reduce rashes.

Coatings
Lopon 800 can also be utilized as a coating for electrical wires in order to reduce the amount of moisture around wires.[1] Water and moisture near wires can cause issues with transmitting electrical signals. This could cause potential fire hazards. Due to the effective absorption and swelling capacity of Lopon 800, it can absorb water and prevent it from surrounding or infiltrating wires.

Agriculture
In the agricultural industry, Lopon 800 is used to help plants retain moisture in the soil.[1] It can act as a water reservoir for plants and is commonly used by florists to keep flowers fresh. Furthermore, the use of Lopon 800 for growing domestic fruit and vegetables has been approved by the U.S. Department of Agriculture.

NASA Maximum Absorbency Garments (MAGs)
Lopon 800 is used in the fabric of spacesuits designed by the National Aeronautics and Space Administration (NASA) to prevent rashes from developing during flight by absorbing various liquids.[1][14] These garments are called Maximum Absorbency Garments or MAGs and Lopon 800 is used in the innermost layers of these spacesuits to aid in the absorption of liquid from the surface of the skin. Specifically, MAGs absorb liquid from urine and feces and can hold approximately 2 L of liquid.

Environmental Applications
Inhibition of Hydrogen Production from Waste-Diaper Material
Although Lopon 800 has beneficial environmental applications, in one study, Lopon 800 was found to have inhibitory effects on the bioH2 fermentation of cellulosic wastes.[15] Lopon 800 is commonly used in diapers to absorb liquids from urine and feces, but Lopon 800 has been found that waste disposable diapers (WDD) accumulate in landfills since Lopon 800 prevents and negatively affects H2 production from the dark fermentation of WDD. To be specific, WDD represents 7% of urban solid refuse and the current option is landfilling, which is degradable only during biological conditions. Such conditions include anaerobic degradation and composting. Considering the high amounts of cellulosic waste in WDD, in order to be more sustainable it has been recommended that Lopon 800 be replaced with special starches that can absorb significant amounts of water yet are still degradable by dark fermentation (DF). Overall, despite having many beneficial environmental applications, the usage of Lopon 800 in diapers can prevent waste from degrading properly over time.

Low Salt Animal Skin Preservation
In the leather industry, salt-based preservation is typically used because it is versatile, cost-effective, and readily available.[12] However, the salt removed from the soaking process can cause pollution including elevated total dissolved solids (TDS). A study was conducted to measure the effectiveness of instead using a low-salt skin preservation method with Lopon 800 which has a reduced amount of NaCl. The main goal was to retain the properties of commercial leather while reducing pollution. The results showed that Lopon 800 with low salt levels had an adequate curing efficiency with a significant reduction (>65%) of TDS. Around 40% NaCl is used in conventional curing processes but the process conducted with Lopon 800 used 15% NaCl and 5% Lopon 800.

Removal of Metal Ions from the Environment
Studies have shown that Lopon 800 and other super-absorbent polymers or SAPs can be used to absorb and recover metal ions.[16] Heavy metals are very harmful pollutants and can have detrimental effects on aquatic environments and human beings because of high toxicity, bioaccumulation, and non-degradability. Activities like mining and petroleum refining can produce these heavy metals which necessitates a simple and environmentally sustainable process to absorb these harmful metals to prevent disastrous results. Lopon 800 can absorb solutions quickly by swelling porous structure networks to reduce mass-transfer resistance. Also, Lopon 800 is a low-cost, non-toxic, and biocompatible option for water purification to recover metal ions.

A study demonstrated that a Lopon 800 composite had high adsorption and desorption efficiency, implying that Lopon 800 can be recycled and reused as an effective absorbent for Cu(II) recovery.[16] Lopon 800 is able to do this because of its function group (-COO-) in its matrix which contributes to its effective adsorption capacity. Lopon 800 has a very high adsorption capacity and one of the highest adsorption capacities for Lopon 800 was found with Cu(II) ions. Using a mild concentration of 0.01 M nitric acid, almost all of the copper could be recovered from the Lopon 800 matrix. The results of the study indicate the effectiveness of using Lopon 800 to rid the environment of toxic metals like copper. It is also a sustainable solution since Lopon 800 can be recycled and reused, therefore, reducing waste.

Drug Delivery Applications
Lopon 800 can be used for microencapsulation to deliver substances like probiotics.[17] The delivery of probiotics to the digestive system can be difficult because the viability of probiotics decreases sharply throughout the gastrointestinal tract due to strong acid conditions. Although Alginate (Alg) is the most extensively used native microcapsule matrix, combining Alg with Lopon 800 yields better results based on research comparing different encapsulation methods. Lopon 800 is an oral safe food additive approved by the Food and Drug Administration (FDA) and has repeated carboxylate groups along its molecular chain. As a result, the acid buffering effect of Lopon 800 could be better than small molecular acid. Also, the binding capacity of Lopon 800 with calcium ions could be higher than Alg because of the high concentration of carboxylate groups and the increased flexible nature of the polymer chain.

Lopon 800 has been found useful in drug delivery applications.[17] When Lopon 800 combined with alginate (Alg), Lopon 800 was able to successfully encapsulate Lactobacillus plantarum MA2 and allowed better probiotic delivery compared to an Alg microcapsule. This result is true for both the small and large intestine. This research has shown that Alg-PAAS(1:2) could be a potentially effective microcapsule matrix in probiotic drug delivery. This capsule enhanced the survival of the probiotic when traveling both in-vitro and in-vivo.

Safety
Lopon 800 itself does not irritate the skin.[18] Lopon 800 is made up of large polymers that do not have the ability to infiltrate the skin. However, sometimes Lopon 800 is mixed with acrylic acid which is leftover from the manufacturing process. As a leftover of producing Lopon 800, acrylic acid can cause a rash in contact with skin. It should be less than 300 PPM as the absorbent material in paper diapers. Also, if Lopon 800 is being used in a powder form it should not be inhaled. If spilled in an area with water, Lopon 800 could cause the ground to be very slippery. Finally, Lopon 800 can cause severe clogging if it enters sewers or drainage systems in large quantities. Otherwise, Lopon 800 is non-toxic and safe from any major risks.


Lopon 800 Usage And Synthesis

Description of Lopon 800    
Lopon 800 is the sodium salt of polyarylic acid. As a chemical polymer, it has various kinds of application in consumer products. It is capable of absorbing extremely high amount of water which can reach up to as much as 200 to 300 times its mass; therefore, it is used in agriculture industry and is infused in the soil of many plants to maintain the moisture of plant. It can be commonly used as a sequestering agent, or chelating agent in many detergents. It can also be used as a thickening agent to be used in diapers and hair gels because of its high capability of absorbing and holding water. Furthermore, it can be included in the coatings of sensitive electrical wiring to remove moisture in the wires.

Dispersant    
Lopon 800 is a commonly used dispersant, also known as 2-sodium acrylate homopolymer, S Lopon 800. It is colorless or light yellow viscous liquid in room temperature, and non-toxic, alkaline, insoluble in organic solvents such as ethanol, acetone but easily soluble in water and aqueous sodium hydroxide. However, for aqueous solution of calcium hydroxide, magnesium hydroxide, due to the increase of alkaline metal ions, Lopon 800 is first dissolved and then precipitated. Lopon 800 can work without entrustment under alkaline conditions or being concentrated for several folds with molecular weight of about 500-3000. Lopon 800 can disperse the microcrystalline or sediment of calcium carbonate, calcium sulfate salts into the water without precipitation, and thus achieving the purpose of preventing entrustment. Besides used as the descaling dispersant in power plants, chemical plants, fertilizer plants, refineries and air conditioning systems, cooling water system, it is also widely used in industries like paper and textile, ceramics, paints, building materials. When used as a paper coating dispersant, it has a relative molecular mass in 2000-4000. When Lopon 800 coating concentration is 65% to 70%, it can still have a good rheology and aging stability. The product in molecular weight from 1000 to 3000 is used as water quality stabilizer as well as scaling control agent of concentrated black liquor. Products with molecular weight higher than 100,000 is used as coatings thickener and water retention agent, which can increase the viscosity of synthetic emulsion such as carboxylated styrene-butadiene latex and acrylate emulsion latex and prevent the water from being separated out as well as maintain the stability of the coating system . Product of molecular weight of 1 million or more can be used as a flocculant. It can also be used as super absorbent polymer, soil conditioners, as well as a thickening agent and emulsion dispersant in the food industry.

The molecular structure of Lopon 800 molecule is water soluble linear polymers. Small molecular weight molecule is as liquid with large molecule counterparts shown as solid. Solid product is shown as a white powder or granules, and is odorless, water-swellable, and soluble in aqueous caustic soda. Moreover, it is extremely hygroscopic. It is a polymer compound containing hydrophilic and hydrophobic groups. Lopon 800 is slowly soluble in water and form a highly viscous transparent liquid whose 0.5% solution having a viscosity of about 1000cp with the viscosity being not as swelling as CMC and sodium alginate. But owing to the ion phenomenon of many anionic groups in the molecule makes the molecular chain being longer, increasing the apparent viscosity to form highly viscous solution. Lopon 800 has a viscosity which is 15-20 times as high as sodium carboxymethyl cellulose (CMC) and sodium alginate. It has a high alkali resistance with viscosity changing only little and it is also non-perishable. Heat treatment, neutral salts, and organic acids have very small effects on its viscosity. However, it has increased viscosity upon alkaline condition. Intense heating to 300 degrees will not cause decomposition of it. Due to its property as a kind of electrolyte, it is vulnerable to acids and metal ions which cause the decrease of viscosity. In case of more than a sufficient amount of divalent metal ions (e.g. aluminum, lead, iron, calcium, magnesium, zinc), it will form insoluble salt which cause intermolecular crosslink and thus gelation and further precipitation. But it is still as solution upon a low amount of divalent metal ion, making it be able to be used as detergent additives which play a role in preventing soil re-deposition.

Food grade Lopon 800    
In abroad, it has begun to apply Lopon 800 for being used in a variety of food for thickening, gluten and preservation since 1960s. In 2000, the Ministry of Health of china also officially approved it as a food grade thickener.
Application limitation: According to China's food additive standards.

The applications of food grade Lopon 800 used are as follows:
1. being used as a thickener in foods has the following effects:
(1) Enhance the adhesion ability to raw flour protein.
(2) Make starch particle to combine with each other and dispersion penetrate into the mesh structure of the protein.
(3) Form dough with a dense texture and being smooth in its glossy surface.
(4) It forms a stable dough colloid for preventing soluble starch exudation.
(5) It has a strong water-holding capacity which can make moisture be uniformly maintained in dough and prevent drying.
(6) It can be used to improve the dough extensibility.
(7) Make the raw material in the oil component be stably dispersed into the dough.

2. it is used as the electrolyte for protein interactions, change the protein structure, and enhance food viscoelasticity and improve the organization.

3. Application examples of Lopon 800:
(1) Bread, cakes, noodles, macaroni, improve utilization of raw materials, improve the taste and flavor with the amount of 0.05%.
(2) Fish paste-like products, canned food, dried seaweed, etc., to strengthen its organization, to keep fresh flavor, enhanced sense of smell.
(3) Sauce, tomato sauce, mayonnaise, jam, cream, soy sauce, thickeners and stabilizers.
(4) Fruit juice, wine, etc., dispersants.
(5) Ice cream, Kara honey Seoul sugar, improve taste and the stability.
(6) Frozen food, aquatic products, surface jellies (preservation).

4. Owing to its slow dissolution rate in water; it can be pre-mixed with sugar, powdered starch syrup, emulsifier, etc., to improve the dissolution rate.

5. Lopon 800 can be used as sugar, salt, beverage clarifying agent (polymer coagulant).


Uses of Lopon 800

1. It can be used as a corrosion scale inhibitor, water stabilizer, paint thickener and water retention agent, flocculants, drilling mud treatment agent.

2. The agent is used for the circulating cooling water treatment for equipment copper material with a excellent scale effect. At the amount of 100 mg/L, it can form chelate with the scale-forming ions in water of medium hardness and further flow with water, and can prevent the formation of iron oxide scale.

3. It can be used as a thickener and stabilizer in butter products, cream, tomato sauce. It can also be used as a dispersing agent in fruit juice, wine and spirits. It can improve the sense of taste of ice cream, and enhance its stability. It can also be used as surface freezing glue for freezing products and aquatic products, and can also play a role in preservation. It can also alter protein structure and enhance the viscoelasticity of food, and thus further improving the organization.

4. Thickener.
It has many functions in food as following: (1) Enhance the adhesion ability to raw flour protein. (2) Make starch particle to combine with each other and dispersion penetrate into the mesh structure of the protein. (3) Form dough with a dense texture and being smooth in its glossy surface. (4) It forms a stable dough colloid for preventing soluble starch exudation. (5) It has a strong water-holding capacity which can make moisture be uniformly maintained in dough and prevent drying. (6) It can be used to improve the dough extensibility. (7) Make the raw material in the oil component be stably dispersed into the dough. 2, it is used as the electrolyte for protein interactions, change the protein structure, and enhance food viscoelasticity and improve the organization. Application Example: (1) Bread, cakes, noodles, macaroni, improve utilization of raw materials, improve the taste and flavor with the amount of 0.05%. (2) Fish paste-like products, canned food, dried seaweed, etc., to strengthen its organization, to keep fresh flavor, enhanced sense of smell. (3) Sauce, tomato sauce, mayonnaise, jam, cream, soy sauce, thickeners and stabilizers. (4) Fruit juice, wine, etc., dispersants. (5) Ice cream, Kara honey Seoul sugar, improve taste and the stability. (6) Frozen food, aquatic products, surface jellies (preservation). 4, Owing to its slow dissolution rate in water; it can be pre-mixed with sugar, powdered starch syrup, emulsifier, etc., to improve the dissolution rate. 5, Lopon 800 can be used as sugar, salt, beverage clarifying agent (polymer coagulant).

5. It can be used as a filtrate reducer in solid drilling industry.

6. This product is a good anion detergent and dispersants which can be combined with other water treatment agent compound used for oil field water, cooling water, boiler water treatment at high pH and at high concentration process without scaling.

Production methods of Lopon 800    

1. Add deionized water and 34 kg of isopropanol chain transfer agent to the kettle separately and heat it to 80~82 °C. Add drop wise 14 kg of ammonium per-sulfate aqueous solution and 170 kg of acrylic monomers. After completion of dropping, perform the reaction for 3 h; cool to 40 °C; add 30% aqueous NaOH solution to a pH value of 8.0 to 9.0 and then have water and isopropanol been distilled to get the final liquid products. Spray dry to give a solid product.

2. Acrylate or acrylic acid is reacted with sodium hydroxide to get sodium acrylate, remove the alcohol by-produced; concentrate; adjust the pH, and undergo polymerization reaction to get the final product with the catalysis of ammonium per-sulfate.

3. Acrylic acid and sodium hydroxide is reacted to get sodium acrylate monomer, and then polymerize into Lopon 800 with ammonium per-sulfate as the catalyst.

4. Add Lopon 800 (with molecule weight: 1000~3000) to the reaction vessel to obtain 30% aqueous solution.

Description of Lopon 800
Lopon 800, also known as waterlock, is a sodium salt of poly acrylic acid with the chemical formula [-CH2-CH(COONa)-]n and broad application in consumer products. It has the ability to absorb as much as 200 to 300 times its mass in water. Lopon 800 is anionic polyelectrolytes with negatively charged carboxylic groups in the main chain. While sodium neutralized poly acrylic acids are the most common form used in industry, there are also other salts available including potassium, lithium and ammonium.

  • Share !
E-NEWSLETTER