Quick Search


Details determine the quality of every job




Chemical engineering is a branch of engineering which deals with the study of design and operation of chemical plants as well as methods of improving production. Chemical engineers develop economical commercial processes to convert raw material into useful products. Chemical engineering uses principles of chemistryphysicsmathematicsbiology, and economics to efficiently use, produce, design, transport and transform energy and materials. The work of chemical engineers can range from the utilization of nanotechnology and nanomaterials in the laboratory to large-scale industrial processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products.

Chemical engineers are involved in many aspects of plant design and operation, including safety and hazard assessments, process design and analysis, modelingcontrol engineeringchemical reaction engineeringnuclear engineeringbiological engineering, construction specification, and operating instructions.

Chemical engineers typically hold a degree in Chemical Engineering or Process Engineering. Practicing engineers may have professional certification and be accredited members of a professional body. Such bodies include the Institution of Chemical Engineers (IChemE) or the American Institute of Chemical Engineers (AIChE). A degree in chemical engineering is directly linked with all of the other engineering disciplines, to various extents.


Chemical engineering emerged upon the development of unit operations, a fundamental concept of the discipline of chemical engineering. Most authors agree that Davis invented the concept of unit operations if not substantially developed it. He gave a series of lectures on unit operations at the Manchester Technical School (later part of University of Manchester Institute of Science and Technology and now the University of Manchester) in 1887, considered to be one of the earliest such about chemical engineering. Three years before Davis' lectures, Henry Edward Armstrong taught a degree course in chemical engineering at the City and Guilds of London Institute. Armstrong's course failed simply because its graduates were not especially attractive to employers. Employers of the time would have rather hired chemists and mechanical engineers. Courses in chemical engineering offered by Massachusetts Institute of Technology (MIT) in the United States, Owens College in Manchester, England, and University College London suffered under similar circumstances

Starting from 1888, Lewis M. Norton taught at MIT the first chemical engineering course in the United States. Norton's course was contemporaneous and essentially similar to Armstrong's course. Both courses, however, simply merged chemistry and engineering subjects along with product design. "Its practitioners had difficulty convincing engineers that they were engineers and chemists that they were not simply chemists."] Unit operations was introduced into the course by William Hultz Walker in 1905. By the early 1920s, unit operations became an important aspect of chemical engineering at MIT and other US universities, as well as at Imperial College London. The American Institute of Chemical Engineers (AIChE), established in 1908, played a key role in making chemical engineering considered an independent science, and unit operations central to chemical engineering. For instance, it defined chemical engineering to be a "science of itself, the basis of which is ... unit operations" in a 1922 report; and with which principle, it had published a list of academic institutions which offered "satisfactory" chemical engineering courses.[14] Meanwhile, promoting chemical engineering as a distinct science in Britain led to the establishment of the Institution of Chemical Engineers (IChemE) in 1922. IChemE likewise helped make unit operations considered essential to the discipline.

  • Share !