Quick Search

PRODUCTS

SUCCINIC ACID (1,4-BUTANEDIOIC ACID)

Succinic Acid (1,4-Butanedioic acid) is a dicarboxylic acid with the chemical formula (CH2)2(CO2H)2.
The name of Succinic Acid derives from Latin succinum, meaning amber. 

CAS Number: 110-15-6
EC Number: 203-740-4
IUPAC name: Succinic Acid (1,4-Butanedioic acid)
Chemical Formula: HOOCCH2CH2COOH

Other names: Succinic acid, butanedioic acid, 110-15-6, Amber acid, Asuccin, Dihydrofumaric acid, Wormwood acid, Katasuccin, Bernsteinsaure, 1,2-Ethanedicarboxylic acid, ethylenesuccinic acid, 1,4-Butanedioic acid, Wormwood, Succinicum acidum, Butandisaeure, Acidum succinicum, Butanedionic acid, Kyselina jantarova, Butane diacid, Ethylene dicarboxylic acid, acide succinique, HSDB 791, acide butanedioique, NSC 106449, UNII-AB6MNQ6J6L, AB6MNQ6J6L, AI3-06297, EINECS 203-740-4, MFCD00002789, succ, NSC-106449, BRN 1754069, DTXSID6023602, E363, FEMA NO. 4719, CHEBI:15741, HOOC-CH2-CH2-COOH, DTXCID303602, EC 203-740-4, 4-02-00-01908, NSC25949, 1,2 Ethanedicarboxylic Acid, NCGC00159372-02, NCGC00159372-04, Succinellite, Sal succini, WLN: QV2VQ, SUCCINIC ACID (II), SUCCINIC ACID [II], SIN, Succinic Acid; Butanedioic acid, Ethylene succinic acid, Ethanedicarboxylic acid, butandisaure, succinic-acid, succinate, 9, CAS-110-15-6, Succinic acid [NF], Succinic acid (8CI), 1,4 Butanedioic Acid, Butanedioic acid (9CI), Dihydrofumarate, Succinicate, Butanedioic acid diammonium salt, 1cze, 1,4-Butanedioate, Succinic acid, 6, Succinic acid, FCC, Succinic Acide,(S), Succinic acid, 99%, Succinic acid, natural, 4lh2, 1,2-Ethanedicarboxylate, suc, bmse000183, bmse000968, CHEMBL576, BDBM26121, HMS3885O04, HY-N0420, STR02803, Tox21_111612, Tox21_201918, Tox21_303247, BBL002473, LMFA01170043, NSC-25949, NSC106449, s3791, STK387105, AKOS000118899, Tox21_111612_1, 1ST7504, CCG-266069, DB00139, NCGC00159372-03, NCGC00159372-05, NCGC00159372-06, NCGC00257092-01, NCGC00259467-01, BP-21128, CS-0008946, FT-0652509, FT-0773657, NS00002272, S0100, EN300-17990, C00042, D85169, AB01332192-02, Q213050, SR-01000944556, J-002386, SR-01000944556-2, Z57127453, F2191-0239, 37E8FFFB-70DA-4399-B724-476BD8715EF0, 26776-24-9

In living organisms, Succinic Acid (1,4-Butanedioic acid) takes the form of an anion, succinate, which has multiple biological roles as a metabolic intermediate being converted into fumarate by the enzyme succinate dehydrogenase in complex 2 of the electron transport chain which is involved in making ATP, and as a signaling molecule reflecting the cellular metabolic state.
Succinic Acid (1,4-Butanedioic acid) is marketed as food additive E363. 

Succinic Acid (1,4-Butanedioic acid), also called Succinic Acid , a dicarboxylic acid of molecular formula C4H6O4 that is widely distributed in almost all plant and animal tissues and that plays a significant role in intermediary metabolism. 
Succinic Acid (1,4-Butanedioic acid) is a colourless crystalline solid, soluble in water, with a melting point of 185–187° C (365–369° F).

Succinic Acid (1,4-Butanedioic acid) was first obtained as a distillation product of amber (Latin: succinum), for which it is named. 
The common method of synthesis of Succinic Acid (1,4-Butanedioic acid) is the catalytic hydrogenation of maleic acid or its anhydride, although other methods are being used and investigated. 
Succinic Acid (1,4-Butanedioic acid) has uses in certain drug compounds, in agricultural and food production, and in manufacturing.

Succinic Acid (1,4-Butanedioic acid) is generated in mitochondria via the tricarboxylic acid cycle (TCA). 
Succinic Acid (1,4-Butanedioic acid) can exit the mitochondrial matrix and function in the cytoplasm as well as the extracellular space, changing gene expression patterns, modulating epigenetic landscape or demonstrating hormone-like signaling.
As such, Succinic Acid (1,4-Butanedioic acid) links cellular metabolism, especially ATP formation, to the regulation of cellular function. 
Dysregulation of Succinic Acid (1,4-Butanedioic acid) synthesis, and therefore ATP synthesis, happens in some genetic mitochondrial diseases, such as Leigh syndrome, and Melas syndrome, and degradation can lead to pathological conditions, such as malignant transformation, inflammation and tissue injury.

General description of Succinic Acid (1,4-Butanedioic acid):
Succinic Acid (1,4-Butanedioic acid), an organic acid is an important building block that has a wide range of synthetic applications. 
Presently Succinic Acid (1,4-Butanedioic acid) is synthesized from petrochemical compounds. 
Due to Succinic Acid (1,4-Butanedioic acid)s increasing demand many bio-based methods have been proposed for its synthesis as an efficient alternative. 
Succinic Acid (1,4-Butanedioic acid)s utility as a low shrinkage additive (LSA) in unsaturated polyester resin (UPR) has been investigated.

Applications of Succinic Acid (1,4-Butanedioic acid):
Succinic Acid (1,4-Butanedioic acid) may be used in the following processes:
As a leaching agent in extracting lithium (Li), cobalt from used Li-ion batteries and magnesium from magnesite ore.
Synthesis of new elastic polyesters.
As a cocrystallising agent in the synthesis of cocrystals with organic molecules.

Succinic Acid (1,4-Butanedioic acid) is a naturally occurring four-carbon dicarboxylic acid with the molecular formula C4H6O4 that is produced by liquefied petroleum gas. 
However, petroleum gas is expensive and thus Succinic Acid (1,4-Butanedioic acid) is generated by different microbes. 
Succinic Acid (1,4-Butanedioic acid) is naturally formed by most living cells as an outcome of anaerobic digestion.

Succinic Acid (1,4-Butanedioic acid) is a common organic acid, which can be used in many food, chemical, and pharmaceutical industries as a precursor to generate many chemicals such as solvents, perfumes, lacquers, plasticizer, dyes, and photographic chemicals. 
Succinic Acid (1,4-Butanedioic acid) is also used as an antibiotic and curative agent. 
Succinic Acid (1,4-Butanedioic acid) also finds application as a surfactant, ion chelator, and as an additive in various industries.

What is Succinic Acid (1,4-Butanedioic acid)?
Succinic Acid (1,4-Butanedioic acid), with molecular formulation C4H6O4, is a water-soluble, odorless, colorless crystal with an acid taste that is used as a chemical intermediate, in medicine, the manufacture of lacquers, and to make perfume esters. 
Succinic Acid (1,4-Butanedioic acid) is also used in foods as a sequestrant, buffer, and a neutralizing agent. 
Succinic Acid (1,4-Butanedioic acid) is a normal intermediary metabolite and a constituent of the citric acid cycle, and found naturally in human urine.

How to Use Succinic Acid (1,4-Butanedioic acid)?
Ideally, it's best to look for Succinic Acid (1,4-Butanedioic acid) in a lightweight serum or treatment; the molecule is too small to be able to effectively penetrate through heavy creams and oils.
Follow product directions when it comes to usage and application, particularly if Succinic Acid (1,4-Butanedioic acid)'s an anti-acne product.

Physical properties of Succinic Acid (1,4-Butanedioic acid):
Succinic Acid (1,4-Butanedioic acid) is a white, odorless solid with a highly acidic taste.
In an aqueous solution, succinic acid readily ionizes to form its conjugate base, succinate (/ˈsʌksɪneɪt/). 
As a diprotic acid, Succinic Acid (1,4-Butanedioic acid) undergoes two successive deprotonation reactions:
(CH2)2(CO2H)2 → (CH2)2(CO2H)(CO2)− + H+
(CH2)2(CO2H)(CO2)− → (CH2)2(CO2)22− + H+

The pKa of these processes are 4.3 and 5.6, respectively. 
Both anions are colorless and can be isolated as the salts, e.g., Na(CH2)2(CO2H)(CO2) and Na2(CH2)2(CO2)2. 
In living organisms, primarily succinate, not succinic acid, is found.

As a radical group Succinic Acid (1,4-Butanedioic acid) is called a succinyl (/ˈsʌksɪnəl/) group.
Like most simple mono- and dicarboxylic acids, Succinic Acid (1,4-Butanedioic acid) is not harmful but can be an irritant to skin and eyes.

Succinic Acid (1,4-Butanedioic acid) is a dicarboxylic acid. 
Succinic Acid (1,4-Butanedioic acid) is an important component of the citric acid or TCA cycle and is capable of donating electrons to the electron transfer chain. 
Succinate is found in all living organisms ranging from bacteria to plants to mammals.

In eukaryotes, succinate is generated in the mitochondria via the tricarboxylic acid cycle (TCA). 
Succinate can readily be imported into the mitochondrial matrix by the n-butylmalonate- (or phenylsuccinate-) sensitive dicarboxylate carrier in exchange with inorganic phosphate or another organic acid, e. g. malate. 

Succinate can exit the mitochondrial matrix and function in the cytoplasm as well as the extracellular space. 
Succinate has multiple biological roles including roles as a metabolic intermediate and roles as a cell signalling molecule. 

Succinate can alter gene expression patterns, thereby modulating the epigenetic landscape or it can exhibit hormone-like signaling functions. 
As such, succinate links cellular metabolism, especially ATP formation, to the regulation of cellular function. 

Succinate can be broken down or metabolized into fumarate by the enzyme succinate dehydrogenase (SDH), which is part of the electron transport chain involved in making ATP. 
Dysregulation of succinate synthesis, and therefore ATP synthesis, can happen in a number of genetic mitochondrial diseases, such as Leigh syndrome, and Melas syndrome. 

Succinate has been found to be associated with D-2-hydroxyglutaric aciduria, which is an inborn error of metabolism. 
Succinic Acid (1,4-Butanedioic acid) has recently been identified as an oncometabolite or an endogenous, cancer causing metabolite.

Commercial production of Succinic Acid (1,4-Butanedioic acid):
Historically, Succinic Acid (1,4-Butanedioic acid) was obtained from amber by distillation and has thus been known as spirit of amber. 
Common industrial routes include hydrogenation of maleic acid, oxidation of 1,4-butanediol, and carbonylation of ethylene glycol. 

Succinate is also produced from butane via maleic anhydride.
Global production is estimated at 16,000 to 30,000 tons a year, with an annual growth rate of 10%.
Genetically engineered Escherichia coli and Saccharomyces cerevisiae are proposed for the commercial production via fermentation of glucose.

Chemical reactions of Succinic Acid (1,4-Butanedioic acid):
Succinic Acid (1,4-Butanedioic acid) can be dehydrogenated to fumaric acid or be converted to diesters, such as diethylsuccinate (CH2CO2CH2CH3)2. 
This diethyl ester is a substrate in the Stobbe condensation. 
Dehydration of Succinic Acid (1,4-Butanedioic acid) gives succinic anhydride.
Succinate can be used to derive 1,4-butanediol, maleic anhydride, succinimide, 2-pyrrolidinone and tetrahydrofuran.

Precursor to polymers, resins, and solvents:
Succinic Acid (1,4-Butanedioic acid) is a precursor to some polyesters and a component of some alkyd resins.
1,4-Butanediol (BDO) can be synthesized using succinic acid as a precursor.
The automotive and electronics industries heavily rely on BDO to produce connectors, insulators, wheel covers, gearshift knobs and reinforcing beams.

Succinic Acid (1,4-Butanedioic acid) also serves as the bases of certain biodegradable polymers, which are of interest in tissue engineering applications.
Acylation with succinic acid is called succination. 
Oversuccination occurs when more than one succinate adds to a substrate.

Food and dietary supplement:
As a food additive and dietary supplement, Succinic Acid (1,4-Butanedioic acid) is generally recognized as safe by the U.S. Food and Drug Administration.
Succinic Acid (1,4-Butanedioic acid) is used primarily as an acidity regulator in the food and beverage industry. 
Succinic Acid (1,4-Butanedioic acid) is also available as a flavoring agent, contributing a somewhat sour and astringent component to umami taste.

As an excipient in pharmaceutical products, Succinic Acid (1,4-Butanedioic acid) is also used to control acidity or as a counter ion.
Drugs involving succinate include metoprolol succinate, sumatriptan succinate, Doxylamine succinate or solifenacin succinate. 

Succinic Acid (1,4-Butanedioic acid) is a dicarboxylic acid that occurs naturally in plant and animal tissues. 
Succinic Acid (1,4-Butanedioic acid) is also known as “Spirit of Amber.” 
When Succinic Acid (1,4-Butanedioic acid) was first discovered, it was extracted from amber by pulverizing and distilling it using a sand bath. 
Succinic Acid (1,4-Butanedioic acid) was primarily used externally for rheumatic aches and pains.

Almost infinite esters can be obtained from carboxylic acids. 
Esters are produced by combining an acid with an alcohol and removal of a water molecule. 
Carboxylic acid esters are used in a variety of direct and indirect applications.

Lower chain esters are used as flavoring base materials, plasticizers, solvent carriers and coupling agents. 
Higher chain compounds are used as components in metalworking fluids, surfactants, lubricants, detergents, oiling agents, emulsifiers, wetting agents, textile treatments and emollients.

Esters are also used as intermediates for the manufacture of a variety of target compounds. 
The almost infinite esters provide a wide range of viscosity, specific gravity, vapor pressure, boiling point, and other physical and chemical properties for the proper application selections.

Applications of Succinic Acid (1,4-Butanedioic acid):
Succinic Acid (1,4-Butanedioic acid) is used as a flavoring agent for food and beverages. 
Producing five heterocyclic compounds, Succinic Acid (1,4-Butanedioic acid) is used as an intermediate for dyes, perfumes, lacquers, photographic chemicals, alkyd resins, plasticizers, metal treatment chemicals, and coatings. 
Succinic Acid (1,4-Butanedioic acid) is also used in the manufacture of medicines for sedatives, antispasmers, antiplegm, antiphogistic, anrhoers, contraceptives, and cancer-curing.

This four carbon dicarboxylic acid has uses in a number of industries including polymers (clothing fibres), food, surfactants and detergents, flavors and fragrances and as a starting material for any number of chemicals including adipic acid, N-methyl pyrrolidinone, 2-pyrrolidinone, succinate salts, 1,4-butanediol, maleic anhydride, tetrahydrofuran and gamma-butyrolactone, which are used in the pharmaceutical industry.

Succinic Acid (1,4-Butanedioic acid) has many uses in the pharma industry – too many to mention, but some examples are as a starting material for active pharmaceutical ingredients (APIs), as an additive in formulation, succinic acid monoethyl ester has been used as an insulinotropic agent, and the compound has also been used as a cross linker in drug control release polymers.

Boiling point: 235 °C (1013 hPa)
Density: 1.57 g/cm3 (25 °C)
Ignition temperature: 470 °C
Melting Point: 188 °C

pH value: 2.7 (10 g/l, H₂O, 20 °C)
Bulk density: 940 kg/m3
Solubility: 58 g/l
Molecular Weight: 118.09 g/mol

XLogP3: -0.6
Hydrogen Bond Donor Count: 2
Hydrogen Bond Acceptor Count: 4
Rotatable Bond Count: 3

Exact Mass: 118.02660867 g/mol
Monoisotopic Mass: 118.02660867 g/mol
Topological Polar Surface Area: 74.6Ų
Heavy Atom Count: 8

Complexity: 92.6
Covalently-Bonded Unit Count: 1
Compound Is Canonicalized: Yes

Succinic Acid (1,4-Butanedioic acid) is a colorless crystalline solid with a melting point of 185-187° C. 
Succinic Acid (1,4-Butanedioic acid) is soluble in water, slightly dissolves in ethanol, ether, acetone and glycerine. 
Succinic Acid (1,4-Butanedioic acid) does not dissolve in benzene, carbon sulfide, carbon tetrachloride or oil ether.
Carboxylic acids can yield acyl halides, anhydrides, esters, amides, and nitriles for applications in the drug, agriculture, food products, and other industries.

Biosynthesis of Succinic Acid (1,4-Butanedioic acid):
Succinate is a key intermediate in the tricarboxylic acid cycle, a primary metabolic pathway used to produce chemical energy in the presence of O2. 
Succinyl-CoA + NDP + Pi → Succinate + CoA + NTP
Succinate + FAD → Fumarate + FADH2

SDH also participates in the mitochondrial electron transport chain, where it is known as respiratory complex II. 
This enzyme complex is a 4 subunit membrane-bound lipoprotein which couples the oxidation of succinate to the reduction of ubiquinone via the intermediate electron carriers FAD and three 2Fe-2S clusters. 
Succinate thus serves as a direct electron donor to the electron transport chain, and itself is converted into fumarate.

Succinate can alternatively be formed by reverse activity of SDH. 
Under anaerobic conditions certain bacteria such as A. succinogenes, A. succiniciproducens and M. succiniciproducens, run the TCA cycle in reverse and convert glucose to succinate through the intermediates of oxaloacetate, malate and fumarate.

This pathway is exploited in metabolic engineering to net generate succinate for human use.
Additionally, succinic acid produced during the fermentation of sugar provides a combination of saltiness, bitterness and acidity to fermented alcohols.

Accumulation of fumarate can drive the reverse activity of SDH, thus enhancing succinate generation. 
Under pathological and physiological conditions, the malate-aspartate shuttle or the purine nucleotide shuttle can increase mitochondrial fumarate, which is then readily converted to succinate.

Physical properties of Succinic Acid (1,4-Butanedioic acid):
At room temperature, pure Succinic Acid (1,4-Butanedioic acid) is a solid that forms colorless, odorless crystals. 
Succinic Acid (1,4-Butanedioic acid) has a melting point of 185  °C and a boiling point of 235  °C. 
Succinic Acid (1,4-Butanedioic acid) is a diprotic acid. 
The carboxylate anion is called 'succinate and esters of succinic acid are called alkyl succinates.

Biochemical role of Succinic Acid (1,4-Butanedioic acid):
Succinate is a component of the citric acid cycle and is capable of donating electrons to the electron transfer chain via the following reaction:
succinate + FAD → fumarate + FADH2

This is catalysed by the enzyme succinate dehydrogenase (or complex II of the mitochondrial ETC). 
The complex is a 4 subunit membrane-bound lipoprotein which couples the oxidation of succinate to the reduction of ubiquinone. Intermediate electron carriers are FAD and three Fe2S2 clusters part of subunit B.
Mark Donnelly from Argonne National Laboratory developed one of the best strains (AFP 184) to convert raw hydrolysates from biomass to succinate.

History of Succinic Acid (1,4-Butanedioic acid):
Spirit of amber was procured from amber by pulverising and distilling it using a sand bath. 
Succinic Acid (1,4-Butanedioic acid) was chiefly used externally for rheumatic aches and pains, and internally in inveterate gleets.

Succinic Acid (1,4-Butanedioic acid), also referred to as Succinic Acid (1,4-Butanedioic acid), is an organic acid, which can be synthesized by various microorganisms from different carbon sources. 
Succinic Acid (1,4-Butanedioic acid) is a dicarboxylic acid and an intermediate in Kreb's cycle.

Succinic Acid (1,4-Butanedioic acid), also called Succinic Acid , a dicarboxylic acid of molecular formula C4H6O4 that is widely distributed in almost all plant and animal tissues and that plays a significant role in intermediary metabolism. 

Succinic Acid (1,4-Butanedioic acid) accounts for up to the 90% of the nonvolatile acids produced during alcoholic fermentation. 
The content of Succinic Acid (1,4-Butanedioic acid) in wine ranges normally from 0.5 to 1.5 g/L, but the maximum concentration may reach 3 g/L. 
Succinic Acid (1,4-Butanedioic acid) is a diprotic acid. 

Succinic Acid (1,4-Butanedioic acid)s pKa at 25°C are 4.21 and 5.64. 
This means that at pH 3.50, most Succinic Acid (1,4-Butanedioic acid) (83.9%) is present in its undissociated form; monodissociated succinate ion accounts only for approximately 16%, while the dissociation of the second carboxylic group is practically negligible.

Succinate is also a product of the glyoxylate cycle, which converts two two-carbon acetyl units into the four-carbon succinate. 
The glyoxylate cycle is utilized by many bacteria, plants and fungi and allows these organisms to subsist on acetate or acetyl CoA yielding compounds. 
The pathway avoids the decarboxylation steps of the TCA cycle via the enzyme isocitrate lyase which cleaves isocitrate into succinate and glyoxylate. 

Succinate is the re-entry point for the gamma-aminobutyric acid (GABA) shunt into the TCA cycle, a closed cycle which synthesizes and recycles GABA.
The GABA shunt serves as an alternate route to convert alpha-ketoglutarate into succinate, bypassing the TCA cycle intermediate succinyl-CoA and instead producing the intermediate GABA. 
Transamination and subsequent decarboxylation of alpha-ketoglutarate leads to the formation of GABA. GABA is then metabolized by GABA transaminase to succinic semialdehyde. 

Finally, succinic semialdehyde is oxidized by succinic semialdehyde dehydrogenase (SSADH) to form succinate, re-entering the TCA cycle and closing the loop. 
Enzymes required for the GABA shunt are expressed in neurons, glial cells, macrophages and pancreatic cells.

Cellular metabolism of Succinic Acid (1,4-Butanedioic acid):
Succinate is produced and concentrated in the mitochondria and its primary biological function is that of a metabolic intermediate.
All metabolic pathways that are interlinked with the TCA cycle, including the metabolism of carbohydrates, amino acids, fatty acids, cholesterol, and heme, rely on the temporary formation of succinate.

The intermediate is made available for biosynthetic processes through multiple pathways, including the reductive branch of the TCA cycle or the glyoxylate cycle, which are able to drive net production of succinate.
In rodents, mitochondrial concentrations are approximately ~0.5 mM while plasma concentration are only 2–20 μM.

Mechanism of action:
Succinate is an essential component of the Krebs or citric acid cycle and serves an electron donor in the production of fumaric acid and FADH2. 
Succinic Acid (1,4-Butanedioic acid) also has been shown to be a good "natural" antibiotic because of its relative acidic or caustic nature (high concentrations can even cause burns). 

Succinate supplements have been shown to help reduce the effects of hangovers by activating the degradation of acetaldehyde - a toxic byproduct of alcohol metabolism - into CO2 and H2O through aerobic metabolism. 
Succinic Acid (1,4-Butanedioic acid) has been shown to stimulate neural system recovery and bolster the immune system. 
Claims have also been made that Succinic Acid (1,4-Butanedioic acid) boosts awareness, concentration and reflexes.

Succinic Acid (1,4-Butanedioic acid) is an important chemical and raw material widely used in medicine, food, biodegradable materials, fine chemicals, and other industrial fields. 
However, traditional methods for purifying Succinic Acid (1,4-Butanedioic acid) from fermentation broth are costly, poorly efficient, and harmful to the environment. 
In this study, an efficient method for purifying Succinic Acid (1,4-Butanedioic acid) from the fermentation broth of Escherichia coli NZN111 was developed through crystallization and co-crystallization with urea.
 
First, the filtrate was collected by filtering the fermentation broth, and pH was adjusted to 2.0 by supplementing sulfuric acid. 
Crystallization was carried out at 8°C for 4 h to obtain Succinic Acid (1,4-Butanedioic acid) crystals. 
The recovery rate and purity of Succinic Acid (1,4-Butanedioic acid) were 73.4% and over 99%, respectively. 

Then, urea was added to the remaining solution with a mass ratio of urea to residual Succinic Acid (1,4-Butanedioic acid) of 4:1 (murea/mSA). 
The second crystallization was carried out at pH 2 and 4°C for 12 h to obtain Succinic Acid (1,4-Butanedioic acid)-urea co-crystal. 
The recovery rate of Succinic Acid (1,4-Butanedioic acid) residue was 92.0%. 
The Succinic Acid (1,4-Butanedioic acid)-urea crystal was further mixed with phosphorous acid (4.2% of the mass of Succinic Acid (1,4-Butanedioic acid) co-crystal) and maintained at 195°C for 6 h to synthesize succinimide, and the yield was >80%. 

This novel and efficient purification process was characterized by the significantly reduced urea consumption, and high Succinic Acid (1,4-Butanedioic acid) recovery (totally 95%), and high succinimide synthesis yield (80%). 
Thus, this study potentially provided a novel and efficient strategy for the industrial production of Succinic Acid (1,4-Butanedioic acid) and succinimide.

About Succinic Acid (1,4-Butanedioic acid) Helpful information:
Succinic Acid (1,4-Butanedioic acid) is registered under the REACH Regulation and is manufactured in and / or imported to the European Economic Area, at ≥ 10 000 to < 100 000 tonnes per annum.
Succinic Acid (1,4-Butanedioic acid) is used by consumers, by professional workers (widespread uses), in formulation or re-packing, at industrial sites and in manufacturing.

Consumer Uses of Succinic Acid (1,4-Butanedioic acid):
Succinic Acid (1,4-Butanedioic acid) is used in the following products: adsorbents, fertilisers, inks and toners, washing & cleaning products, water softeners, adhesives and sealants, coating products, fillers, putties, plasters, modelling clay, perfumes and fragrances, pharmaceuticals, polymers and cosmetics and personal care products.

Other release to the environment of Succinic Acid (1,4-Butanedioic acid) is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners) and outdoor use.

Article service life of Succinic Acid (1,4-Butanedioic acid):
ECHA has no public registered data on the routes by which Succinic Acid (1,4-Butanedioic acid) is most likely to be released to the environment. ECHA has no public registered data indicating whether or into which articles the substance might have been processed.

Widespread uses of Succinic Acid (1,4-Butanedioic acid) by professional workers:
Succinic Acid (1,4-Butanedioic acid) is used in the following products: pH regulators and water treatment products, anti-freeze products, metal surface treatment products, heat transfer fluids, hydraulic fluids, washing & cleaning products, fertilisers, water softeners and cosmetics and personal care products. This substance is used in the following areas: printing and recorded media reproduction, health services and scientific research and development.

This substance is used for the manufacture of: plastic products. Other release to the environment of this substance is likely to occur from: indoor use (e.g. machine wash liquids/detergents, automotive care products, paints and coating or adhesives, fragrances and air fresheners), outdoor use and outdoor use in close systems with minimal release (e.g. hydraulic liquids in automotive suspension, lubricants in motor oil and break fluids).

Formulation or re-packing of Succinic Acid (1,4-Butanedioic acid):
Succinic Acid (1,4-Butanedioic acid) is used in the following products: washing & cleaning products, water softeners, cosmetics and personal care products, non-metal-surface treatment products, inks and toners, paper chemicals and dyes and polymers.
Release to the environment of Succinic Acid (1,4-Butanedioic acid) can occur from industrial use: formulation of mixtures.

Uses at industrial sites of Succinic Acid (1,4-Butanedioic acid):
Succinic Acid (1,4-Butanedioic acid) is used in the following products: pH regulators and water treatment products, metal surface treatment products, leather treatment products, metal working fluids and laboratory chemicals.
Succinic Acid (1,4-Butanedioic acid) is used in the following areas: municipal supply (e.g. electricity, steam, gas, water) and sewage treatment, scientific research and development and printing and recorded media reproduction.
Succinic Acid (1,4-Butanedioic acid) is used for the manufacture of: chemicals, plastic products and textile, leather or fur.

Release to the environment of Succinic Acid (1,4-Butanedioic acid) can occur from industrial use: in processing aids at industrial sites, as an intermediate step in further manufacturing of another substance (use of intermediates), for thermoplastic manufacture, in the production of articles and as processing aid.
Manufacture of Succinic Acid (1,4-Butanedioic acid):
Release to the environment of Succinic Acid (1,4-Butanedioic acid) can occur from industrial use: manufacturing of the substance.

Succinic Acid (1,4-Butanedioic acid) is a precursor of many important, large-volume industrial chemicals and consumer products. 
Succinic Acid (1,4-Butanedioic acid) was once common knowledge that many ruminant microorganisms accumulated succinic acid under anaerobic conditions. 
However, Succinic Acid (1,4-Butanedioic acid) was not until the discovery of Anaerobiospirillum succiniciproducens at the Michigan Biotechnology Institute (MBI), which was capable of producing succinic acid up to about 50 g/L under optimum conditions, that the commercial feasibility of producing the compound by biological processes was realized.

Other microbial strains capable of producing Succinic Acid (1,4-Butanedioic acid) to high final concentrations subsequently were isolated and engineered, followed by development of fermentation processes for their uses. 
Processes for recovery and purification of Succinic Acid (1,4-Butanedioic acid) from fermentation broths were simultaneously established along with new applications of succinic acid, e.g., production of biodegradable deicing compounds and solvents.

Several technologies for the fermentation-based production of Succinic Acid (1,4-Butanedioic acid) and the subsequent conversion to useful products are currently commercialized. 
This review gives a summary of the development of microbial strains, their fermentation, and the importance of the down-stream recovery and purification efforts to suit various applications in the context of their current commercialization status for biologically derived succinic acid.

 
  • Share !
E-NEWSLETTER